• Ackerman, S. A., K. I. Strabala, W. P. Menzel, R. A. Frey, C. C. Moeller, and L. E. Gumley, 1998: Discriminating clear sky from clouds with MODIS. J. Geophys. Res., 103, 32 14132 157, https://doi.org/10.1029/1998JD200032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ackerman, S. A., and et al. , 2019: Satellites see the world’s atmosphere. A Century of Progress in Atmospheric and Related Sciences: Celebrating the American Meteorological Society Centennial, Meteor. Monogr., No. 59, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-18-0009.1.

    • Search Google Scholar
    • Export Citation
  • Bantges, R. J., and et al. , 2020: A test of the ability of current bulk optical models to represent the radiative properties of cirrus cloud across the mid- and far-infrared. Atmos. Chem. Phys., 20, 12 88912 903, https://doi.org/10.5194/acp-20-12889-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baran, A. J., 2007: The impact of cirrus microphysical and macrophysical properties on upwelling far-infrared spectra. Quart. J. Roy. Meteor. Soc., 133, 14251437, https://doi.org/10.1002/qj.132.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baum, B. A., P. Yang, A. J. Heymsfield, A. Bansemer, A. Merrelli, C. Schmitt, and C. Wang, 2014: Ice cloud bulk single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm. J. Quant. Spectrosc. Radiat. Transfer, 146, 123139, https://doi.org/10.1016/j.jqsrt.2014.02.029.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellisario, C., and et al. , 2017: Retrievals of the far infrared surface emissivity over the Greenland Plateau using the Tropospheric Airborne Fourier Transform Spectrometer (TAFTS). J. Geophys. Res., 122, 12 15212 166, https://doi.org/10.1002/2017JD027328.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and et al. , 2013: July 2012 Greenland melt extent enhanced by low-level liquid clouds. Nature, 496, 8386, https://doi.org/10.1038/nature12002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blackwell, W. J., and et al. , 2018: An overview of the TROPICS NASA Earth Venture Mission. Quart. J. Roy. Meteor. Soc., 144, 1626, https://doi.org/10.1002/qj.3290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blanchet, J.-P., and et al. , 2011: TICFIRE: A far infrared payload to monitor the evolution of thin ice clouds. Proc. SPIE, 8176, 81761K, https://doi.org/10.1117/12.898577.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., and et al. , 2011: COSP: Satellite simulation software for model assessment. Bull. Amer. Meteor. Soc., 92, 10231043, https://doi.org/10.1175/2011BAMS2856.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Budyko, M. I., 1969: The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611619, https://doi.org/10.3402/tellusa.v21i5.10109.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X. H., X. L. Huang, N. G. Loeb, and H. L. Wei, 2013: Comparisons of clear-sky outgoing far-IR flux inferred from satellite observations and computed from three most recent reanalysis products. J. Climate, 26, 478494, https://doi.org/10.1175/JCLI-D-12-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y.-H., 2020: Influences of surface spectral emissivity and cloud longwave scattering on climate simulations. Ph.D. thesis, University of Michigan at Ann Arbor, 160 pp.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. J. Iacono, and J.-L. Moncet, 1992: Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res., 97, 15 76115 785, https://doi.org/10.1029/92JD01419.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conrath, B. J., R. A. Hanel, V. G. Kunde, and C. Prabhakara, 1970: The Infrared Interferometer Experiment on Nimbus 3. J. Geophys. Res., 75, 58315857, https://doi.org/10.1029/JC075i030p05831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, S. J., T. S. L’Ecuyer, P. Gabriel, G. L. Stephens, A. J. Baran, and P. Yang, 2006: Objective assessment of the information content of visible and infrared radiance measurements for cloud microphysical property retrievals over the global oceans. Part II: Ice clouds. J. Appl. Meteor., 45, 4262, https://doi.org/10.1175/JAM2327.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coursol, L., Q. Libois, P. Gauthier, and J.-P. Blanchet, 2020: Optimal configuration of a far-infrared radiometer to study the Arctic winter atmosphere. J. Geophys. Res. Atmos., 125, e2019JD031773, https://doi.org/10.1029/2019JD031773.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cox, C. V., J. E. Harries, J. P. Taylor, P. D. Green, A. J. Baran, J. C. Pickering, A. E. Last, and J. E. Murray, 2010: Measurement and simulation of mid- and far-infrared spectra in the presence of cirrus. Quart. J. Roy. Meteor. Soc., 136, 718739, https://doi.org/10.1002/qj.596.

    • Search Google Scholar
    • Export Citation
  • Deser, C., and et al. , 2020: Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Climate Change, 10, 277286, https://doi.org/10.1038/s41558-020-0731-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., 2013: Observations of climate feedbacks over 2000–10 and comparisons to climate models. J. Climate, 26, 333342, https://doi.org/10.1175/JCLI-D-11-00640.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dessler, A. E., and S. C. Sherwood, 2009: A matter of humidity. Science, 323, 10201021, https://doi.org/10.1126/science.1171264.

  • Di Natale, G., G. Bianchini, M. Del Guasta, M. Ridolfi, T. Maestri, W. Cossich, D. Magurno, and L. Palchetti, 2020: Characterization of the far-infrared properties and radiative forcing of Antarctic ice and water clouds exploiting the spectrometer-lidar synergy. Remote Sens., 12, 35743595, https://doi.org/10.3390/rs12213574.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fausto, R. S., D. van As, J. E. Box, W. Colgan, and P. L. Langen, 2016: Quantifying the surface energy fluxes in south Greenland during the 2012 high melt episodes using in situ observations. Front. Earth Sci., 4, 82, https://doi.org/10.3389/feart.2016.00082.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., and et al. , 2004: Characterization of upper-troposphere water vapor measurements during AFWEX using LASE. J. Atmos. Oceanic Technol., 21, 17901808, https://doi.org/10.1175/JTECH-1652.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, L06801, https://doi.org/10.1029/2012GL051000.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, J. A., E. Hunter, J. R. Key, and X. Wang, 2005: Clues to variability in Arctic minimum sea ice extent. Geophys. Res. Lett., 32, L21501, https://doi.org/10.1029/2005GL024376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., 2005: Stratospheric water vapor predicted from the Lagrangian temperature history of air entering the stratosphere in the tropics. J. Geophys. Res., 110, D08107, https://doi.org/10.1029/2004JD005516.

    • Search Google Scholar
    • Export Citation
  • Gardner, A. S., 2010: Surface mass balance of Arctic glaciers: Climate influences and modeling approaches. Ph.D. dissertation, University of Alberta, 195 pp., https://doi.org/10.7939/R3FB4WX73.

    • Search Google Scholar
    • Export Citation
  • Hanel, R. A., B. Schlachman, F. D. Clark, C. H. Prokesh, J. B. Taylor, W. M. Wilson, and L. Chaney, 1970: The Nimbus III Michelson interferometer. Appl. Opt., 9, 17671774, https://doi.org/10.1364/AO.9.001767.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanel, R. A., B. Schlachman, D. Rogers, and D. Vanous, 1971: Nimbus 4 Michelson interferometer. Appl. Opt., 10, 13761382, https://doi.org/10.1364/AO.10.001376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harries, J. E., and et al. , 2008: The far-infrared Earth. Rev. Geophys., 46, RG4004, https://doi.org/10.1029/2007RG000233.

  • Hegglin, M. I., and et al. , 2014: Vertical structure of stratospheric water vapour trends derived from merged satellite data. Nat. Geosci., 7, 768776, https://doi.org/10.1038/ngeo2236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., and M. J. Pavolonis, 2009: Gazing at cirrus clouds for 25 years through a split window. Part I: Methodology. J. Appl. Meteor. Climatol., 48, 11001116, https://doi.org/10.1175/2008JAMC1882.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Henderson, D. S., T. L’Ecuyer, G. Stephens, P. Partain, and M. Sekiguchi, 2013: A multi-sensor perspective on the radiative impacts of clouds and aerosols. J. Appl. Meteor. Climatol., 52, 853871, https://doi.org/10.1175/JAMC-D-12-025.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X. L., W. Z. Yang, N. G. Loeb, and V. Ramaswamy, 2008: Spectrally resolved fluxes derived from collocated AIRS and CERES measurements and their application in model evaluation: 1. Clear sky over the tropical oceans. J. Geophys. Res., 113, D09110, https://doi.org/10.1029/2007JD009219.

    • Search Google Scholar
    • Export Citation
  • Huang, X. L., N. G. Loeb, and W. Z. Yang, 2010: Spectrally resolved fluxes derived from collocated AIRS and CERES measurements and their application in model evaluation: 2. Cloudy sky and band-by-band cloud radiative forcing over the tropical oceans. J. Geophys. Res., 115, D21101, https://doi.org/10.1029/2010JD013932.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X. L., X. H. Chen, B. J. Soden, and X. Liu, 2014a: The spectral dimension of longwave feedbacks in the CMIP3 and CMIP5 experiments. Geophys. Res. Lett., 41, 78307837, https://doi.org/10.1002/2014GL061938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X. L., X. H. Chen, G. L. Potter, L. Oreopoulos, J. N. S. Cole, D. M. Lee, and N. G. Loeb, 2014b: A global climatology of outgoing longwave spectral cloud radiative effect and associated effective cloud properties. J. Climate, 27, 74757492, https://doi.org/10.1175/JCLI-D-13-00663.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X. L., X. H. Chen, D. K. Zhou, and X. Liu, 2016: An observationally based global band-by-band surface emissivity dataset for climate and weather simulations. J. Atmos. Sci., 73, 35413555, https://doi.org/10.1175/JAS-D-15-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X. L., X. H. Chen, M. G. Flanner, P. Yang, D. Feldman, and C. Kuo, 2018: Improved representation of surface spectral emissivity in a global climate model and its impact on simulated climate. J. Climate, 31, 37113727, https://doi.org/10.1175/JCLI-D-17-0125.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, X. L., X. H. Chen, and Q. Yue, 2019: Band-by-band contributions to the longwave cloud radiative feedbacks. Geophys. Res. Lett., 46, 69987006, https://doi.org/10.1029/2019GL083466.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hulley, G. C., S. J. Hook, E. Manning, S.-Y. Lee, and E. Fetzer, 2009: Validation of the Atmospheric Infrared Sounder (AIRS) version 5 land surface emissivity product over the Namib and Kalahari Deserts. J. Geophys. Res., 114, D19104, https://doi.org/10.1029/2009JD012351.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hurst, D. F., S. J. Oltmans, H. Vömel, K. H. Rosenlof, S. M. Davis, E. A. Ray, E. G. Hall, and A. F. Jordan, 2011: Stratospheric water vapor trends over Boulder, Colorado: Analysis of the 30-year Boulder record. J. Geophys. Res., 116, D02306, https://doi.org/10.1029/2010JD015065.

    • Search Google Scholar
    • Export Citation
  • Inoue, T., 1985: On the temperature and effective emissivity determination of semi-transparent cirrus clouds by bispectral measurements in the 10 micron window region. J. Meteor. Soc. Japan, 63, 8899, https://doi.org/10.2151/jmsj1965.63.1_88.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jahn, A., J. E. Kay, M. M. Holland, and D. M. Hall, 2016: How predictable is the timing of a summer ice-free Arctic? Geophys. Res. Lett., 43, 91139120, https://doi.org/10.1002/2016GL070067.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johansson, E., A. Devasthale, M. Tjernstrom, A. M. L. Ekman, and T. L’Ecuyer, 2017: Response of the lower troposphere to moisture intrusions into the Arctic. Geophys. Res. Lett., 44, 25272536, https://doi.org/10.1002/2017GL072687.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and et al. , 2014: The Atmospheric Infrared Sounder version 6 cloud products. Atmos. Chem. Phys., 14, 399426, https://doi.org/10.5194/acp-14-399-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., B. J. Drouin, and T. S. L’Ecuyer, 2020: Evaluation of AIRS assessment of sampling sufficiency for low-cost satellite missions: Application to PREFIRE. J. Atmos. Oceanic Technol., 37, 22832298, https://doi.org/10.1175/JTECH-D-20-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapsch, M.-L., R. G. Graverson, M. Tjernstrom, and R. Bintanja, 2016: The effect of downwelling longwave and shortwave radiation on Arctic summer sea ice. J. Climate, 29, 11431159, https://doi.org/10.1175/JCLI-D-15-0238.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., M. M. Holland, and A. Jahn, 2011: Inter-annual to multi-decadal Arctic sea ice extent trends in a warming world. Geophys. Res. Lett., 38, L15708, https://doi.org/10.1029/2011GL048008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and et al. , 2015: The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, https://doi.org/10.1175/BAMS-D-13-00255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Key, J., and M. Haefliger, 1992: Arctic ice surface temperature retrieval from AVHRR thermal channels. J. Geophys. Res., 97, 58855893, https://doi.org/10.1029/92JD00348.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Key, J., J. B. Collins, C. Fowler, and R. S. Stone, 1997: High-latitude surface temperature estimates from thermal satellite data. Remote Sens. Environ., 61, 302309, https://doi.org/10.1016/S0034-4257(97)89497-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, C., D. R. Feldman, X. Huang, M. Flanner, P. Yang, and X. Chen, 2018: Time-dependent cryospheric longwave surface emissivity feedback in the Community Earth System Model. J. Geophys. Res. Atmos., 123, 789813, https://doi.org/10.1002/2017JD027595.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and et al. , 2015: The observed state of global energy balance in the early 21st century. J. Climate, 28, 83198346, https://doi.org/10.1175/JCLI-D-14-00556.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenaerts, J., M. D. Camron, C. Wyburn-Powell, and J. E. Kay, 2020: Present-day and future Greenland ice sheet precipitation frequency from satellite observations and an Earth system model. Cryosphere, 14, 22532265, https://doi.org/10.5194/tc-14-2253-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Libois, Q., and J.-P. Blanchet, 2017: Added value of far-infrared radiometry for remote sensing of ice clouds. J. Geophys. Res. Atmos., 122, 65416564, https://doi.org/10.1002/2016JD026423.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maestri, T., and R. Rizzi, 2003: A study of infrared diabatic forcing of ice clouds in the tropical atmosphere. J. Geophys. Res., 108, 4139, https://doi.org/10.1029/2002JD002146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maestri, T., and et al. , 2014: Analysis of cirrus cloud spectral signatures in the far infrared. J. Quant. Spectrosc. Radiat. Transfer, 141, 4964, https://doi.org/10.1016/j.jqsrt.2014.02.030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maestri, T., C. Arosio, R. Rizzi, L. Palchetti, G. Bianchini, and M. Del Guasta, 2019a: Antarctic ice cloud identification and properties using downwelling spectral radiance from 100 to 1,400 cm−1. J. Geophys. Res., 124, 47614781, https://doi.org/10.1029/2018JD029205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Maestri, T., W. Cossich, and I. Sbrolli, 2019b: Cloud identification and classification from high spectral resolution data in the far infrared and mid-infrared. Atmos. Meas. Tech., 12, 35213540, https://doi.org/10.5194/amt-12-3521-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McClain, E. P., W. G. Pichel, and C. C. Walton, 1985: Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res., 90, 11 58711 601, https://doi.org/10.1029/JC090iC06p11587.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and et al. , 2008: MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteor. Climatol., 47, 11751198, https://doi.org/10.1175/2007JAMC1705.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Merrelli, A., and D. D. Turner, 2012: Comparing information content of upwelling far-infrared and midinfrared radiance spectra for clear atmosphere profiling. J. Atmos. Oceanic Technol., 29, 510526, https://doi.org/10.1175/JTECH-D-11-00113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Met Office, 2016: FAAM B898 COSMICS flight: Airborne atmospheric measurements from core and non-core instrument suites on board the BAE-146 aircraft. NCAS British Atmospheric Data Centre, accessed 12 November 2020, https://catalogue.ceda.ac.uk/uuid/b5758a268bf74497b658628e8b4d7199.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., and et al. , 2019: Analysis of water vapor absorption in the far-infrared and submillimeter regions using surface radiometric measurements from extremely dry locations. J. Geophys. Res. Atmos., 124, 81348160, https://doi.org/10.1029/2018JD029508.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morrison, A. L., J. E. Kay, W. R. Frey, H. Chepfer, and R. Guzman, 2019: Cloud response to Arctic sea ice loss and implications for future feedbacks in the CESM1 climate model. J. Geophys. Res. Atmos., 124, 10031020, https://doi.org/10.1029/2018JD029142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murray, J. E., and et al. , 2020: Retrievals of high-latitude surface emissivity across the infrared from high altitude aircraft flights. J. Geophys. Res., 125, e2020JD033672, https://doi.org/10.1029/2020JD033672.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nishimoto, E., and M. Shiotani, 2012: Seasonal and interannual variability in the temperature structure around the tropical tropopause and its relationship with convective activities. J. Geophys. Res., 117, D02104, https://doi.org/10.1029/2011JD016936.

    • Search Google Scholar
    • Export Citation
  • Palchetti, L., G. Bianchini, G. Di Natale, and M. Del Guasta, 2015: Far-infrared radiative properties of water vapor and clouds in Antarctica. Bull. Amer. Meteor. Soc., 96, 15051518, https://doi.org/10.1175/BAMS-D-13-00286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Palchetti, L., and et al. , 2020: FORUM: Unique far-infrared satellite observations to better understand how Earth radiates energy to space. Bull. Amer. Meteor. Soc., 101, E2030E2046, https://doi.org/10.1175/BAMS-D-19-0322.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pan, F., and X. L. Huang, 2018: The spectral dimension of modeled relative humidity feedbacks in the CMIP5 experiments. J. Climate, 31, 10 02110 038, https://doi.org/10.1175/JCLI-D-17-0491.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prabhakara, C., G. Dalu, and V. G. Kunde, 1974: A search for global and seasonal variation of methane from Nimbus 4 IRIS measurements. J. Geophys. Res., 79, 17441749, https://doi.org/10.1029/JC079i012p01744.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prabhakara, C., E. B. Rodgers, B. J. Conrath, R. A. Hanel, and V. G. Kunde 1976: The Nimbus 4 infrared spectroscopy experiment: 3. Observations of the lower stratospheric thermal structure and total ozone. J. Geophys. Res., 81, 63916399, https://doi.org/10.1029/JC081i036p06391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prabhakara, C., R. S. Fraser, G. Dalu, M.-L. C. Wu, R. J. Curran, and T. Styles, 1988: Thin cirrus clouds: Seasonal distribution over oceans deduced from Nimbus-4 IRIS. J. Appl. Meteor., 27, 379399, https://doi.org/10.1175/1520-0450(1988)027<0379:TCCSDO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rathke, C., J. Fishcer, S. Neshyba, and M. Shupe, 2002: Improving IR cloud phase determination with 20 micrometers spectral observations. Geophys. Res. Lett., 29, 1209, https://doi.org/10.1029/2001GL014594.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. A. Schiffer, 1991: ISCCP cloud data products. Bull. Amer. Meteor. Soc., 72, 220, https://doi.org/10.1175/1520-0477(1991)0722.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rowe, P. M., S. Neshyba, and V. P. Walden, 2013: Radiative consequences of low-temperature infrared refractive indices for super-cooled water clouds. Atmos. Chem. Phys., 13, 11 92511 933, https://doi.org/10.5194/acp-13-11925-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Saito, M., P. Yang, X. Huang, H. E. Brindley, M. G. Mlynczak, and B. H. Kahn, 2020: Spaceborne middle- and far-infrared observations improving nighttime ice cloud property retrievals. Geophys. Res. Lett., 47, e2020GL087491, https://doi.org/10.1029/2020GL087491.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schoeberl, M. R., E. J. Jensen, and S. Woods, 2015: Gravity waves amplify upper tropospheric dehydration by clouds. Earth Space Sci., 2, 485500, https://doi.org/10.1002/2015EA000127.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schweiger, A. J., J. Zhang, R. W. Lindsay, and M. Steele, 2008: Did unusually sunny skies help drive the record sea ice minimum of 2007? Geophys. Res. Lett., 35, L10503, https://doi.org/10.1029/2008GL033463.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shahabadi, M. B., and Y. Huang, 2014: Measuring stratospheric H2O with an airborne spectrometer. J. Atmos. Oceanic Technol., 31, 15021515, https://doi.org/10.1175/JTECH-D-13-00191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Slater, T., A. E. Hogg, and R. Mottram, 2020: Ice-sheet losses track high-end sea-level rise projections. Nat. Climate Change, 10, 879881, https://doi.org/10.1038/s41558-020-0893-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sledd, A., and T. L’Ecuyer, 2019: How much do clouds mask the impact of Arctic sea ice and snow cover variations? Different perspectives from observations and reanalyses. Atmosphere, 10, 12, https://doi.org/10.3390/atmos10010012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S., K. H. Rosenlof, R. W. Portmann, J. S. Daniel, S. M. Davis, T. J. Sanford, and G.-K. Plattner, 2010: Contributions of stratospheric water vapor to decadal changes in the rate of global warming. Science, 327, 12191223, https://doi.org/10.1126/science.1182488.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Spankuch, D., and W. Dohler, 1985: Radiative properties of cirrus clouds in the middle IR derived from Fourier spectrometer measurements from space. Z. Meteor., 35, 314324.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and et al. , 2020: The emerging technological revolution in Earth observations. Bull. Amer. Meteor. Soc., 101, E274E285, https://doi.org/10.1175/BAMS-D-19-0146.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2005: Arctic mixed-phase cloud properties from AERI lidar observations: Algorithm and results from SHEBA. J. Appl. Meteor., 44, 427444, https://doi.org/10.1175/JAM2208.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and E. W. Eloranta, 2008: Validating mixed-phase cloud optical depth retrieved from infrared observations with high spectral resolution lidar. IEEE Geosci. Remote Sens. Lett., 5, 285288, https://doi.org/10.1109/LGRS.2008.915940.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and E. J. Mlawer, 2010: Radiative Heating in Underexplored Bands Campaigns (RHUBC). Bull. Amer. Meteor. Soc., 91, 911924, https://doi.org/10.1175/2010BAMS2904.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Ackerman, B. A. Baum, H. E. Revercomb, and P. Yang, 2003: Cloud phase determination using ground-based AERI observations at SHEBA. J. Appl. Meteor., 42, 701715, https://doi.org/10.1175/1520-0450(2003)0422.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turner, D. D., A. Merrelli, D. Vimont, and E. J. Mlawer, 2012: Impact of modifying the longwave water vapor continuum absorption model on Community Earth System Model simulations. J. Geophys. Res., 117, D04106, https://doi.org/10.1029/2011JD016440.

    • Search Google Scholar
    • Export Citation
  • Van Tricht, K., and et al. , 2016: Clouds enhance Greenland ice sheet meltwater runoff. Nat. Commun., 7, 10266, https://doi.org/10.1038/ncomms10266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vihma, T., 2014: Effects of Arctic sea ice decline on weather and climate: A review. Surv. Geophys., 35, 11751214, https://doi.org/10.1007/s10712-014-9284-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and et al. , 2013: Achieving climate change absolute accuracy in orbit. Bull. Amer. Meteor. Soc., 94, 15191539, https://doi.org/10.1175/BAMS-D-12-00149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., and et al. , 2003: Spectral signature of ice clouds in the far-infrared region: Single-scattering calculations and radiative sensitivity study. J. Geophys. Res., 108, 4569, https://doi.org/10.1029/2002JD003291.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., H. Wei, H.-L. Huang, B. A. Baum, Y. X. Hu, G. W. Kattawar, M. I. Mishchenko, and Q. Fu, 2005: Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region. Appl. Opt., 44, 55125523, https://doi.org/10.1364/AO.44.005512.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, P., L. Bi, B. A. Baum, K. N. Liou, G. W. Kattawar, and M. Mishchenko, 2013: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm. J. Atmos. Sci., 70, 330347, https://doi.org/10.1175/JAS-D-12-039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhou, L., and et al. , 2008: Regression of surface spectral emissivity from hyperspectral instruments. IEEE Trans. Geosci. Remote Sens., 46, 328333, https://doi.org/10.1109/TGRS.2007.912712.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 728 728 81
PDF Downloads 309 309 74

The Polar Radiant Energy in the Far Infrared Experiment: A New Perspective on Polar Longwave Energy Exchanges

View More View Less
  • 1 University of Wisconsin–Madison, and Cooperative Institute for Meteorological Satellite Studies, Madison, Wisconsin
  • | 2 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 3 University of Wisconsin–Madison, Madison, Wisconsin
  • | 4 Space Science and Engineering Center, Madison, Wisconsin
  • | 5 University of Michigan, Ann Arbor, Michigan
  • | 6 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 7 University of Colorado Boulder, Boulder, Colorado
  • | 8 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 9 University of Wisconsin–Madison, Madison, Wisconsin
  • | 10 Space Science and Engineering Center, Madison, Wisconsin
  • | 11 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 12 University of Michigan, Ann Arbor, Michigan
  • | 13 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
  • | 14 University of Michigan, Ann Arbor, Michigan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Earth’s climate is strongly influenced by energy deficits at the poles that emit more thermal energy than they receive from the sun. Energy exchanges between the surface and atmosphere influence the local environment while heat transport from lower latitudes drives midlatitude atmospheric and oceanic circulations. In the Arctic, in particular, local energy imbalances induce strong seasonality in surface–atmosphere heat exchanges and an acute sensitivity to forced climate variations. Despite these important local and global influences, the largest contributions to the polar atmospheric and surface energy budgets have not been fully characterized. The spectral variation of far-infrared radiation that makes up 60% of polar thermal emission has never been systematically measured impeding progress toward consensus in predicted rates of Arctic warming, sea ice decline, and ice sheet melt. Enabled by recent advances in sensor miniaturization and CubeSat technology, the Polar Radiant Energy in the Far Infrared Experiment (PREFIRE) mission will document, for the first time, the spectral, spatial, and temporal variations of polar far-infrared emission. Selected under NASA’s Earth Ventures Instrument (EVI) program, PREFIRE will utilize new lightweight, low-power, ambient temperature detectors capable of measuring at wavelengths up to 50 μm to quantify Earth’s far-infrared spectrum. Estimates of spectral surface emissivity, water vapor, cloud properties, and the atmospheric greenhouse effect derived from these measurements offer the potential to advance our understanding of the factors that modulate thermal fluxes in the cold, dry conditions characteristic of the polar regions.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tristan S. L’Ecuyer, tristan@aos.wisc.edu

Abstract

Earth’s climate is strongly influenced by energy deficits at the poles that emit more thermal energy than they receive from the sun. Energy exchanges between the surface and atmosphere influence the local environment while heat transport from lower latitudes drives midlatitude atmospheric and oceanic circulations. In the Arctic, in particular, local energy imbalances induce strong seasonality in surface–atmosphere heat exchanges and an acute sensitivity to forced climate variations. Despite these important local and global influences, the largest contributions to the polar atmospheric and surface energy budgets have not been fully characterized. The spectral variation of far-infrared radiation that makes up 60% of polar thermal emission has never been systematically measured impeding progress toward consensus in predicted rates of Arctic warming, sea ice decline, and ice sheet melt. Enabled by recent advances in sensor miniaturization and CubeSat technology, the Polar Radiant Energy in the Far Infrared Experiment (PREFIRE) mission will document, for the first time, the spectral, spatial, and temporal variations of polar far-infrared emission. Selected under NASA’s Earth Ventures Instrument (EVI) program, PREFIRE will utilize new lightweight, low-power, ambient temperature detectors capable of measuring at wavelengths up to 50 μm to quantify Earth’s far-infrared spectrum. Estimates of spectral surface emissivity, water vapor, cloud properties, and the atmospheric greenhouse effect derived from these measurements offer the potential to advance our understanding of the factors that modulate thermal fluxes in the cold, dry conditions characteristic of the polar regions.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Tristan S. L’Ecuyer, tristan@aos.wisc.edu
Save