• ACIA, 2005: Arctic Climate Impact Assessment. Cambridge University Press, 1020 pp.

  • Arnell, N. W., D. A. Hudson, and R. G. Jones, 2003: Climate change scenarios from a regional climate model: Estimating change in runoff in southern Africa. J. Geophys. Res., 108, 45194535, https://doi.org/10.1029/2002JD002782.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benson, B., J. Magnuson, and S. Sharma, 2020: Global lake and river ice phenology database, version 1. National Snow and Ice Data Center, accessed 20 March 2021, https://doi.org/10.7265/N5W66HP8.

    • Crossref
    • Export Citation
  • Bernhardt, J., C. Engelhardt, G. Kirillin, and J. Matschullat, 2012: Lake ice phenology in Berlin-Brandenburg from 1947–2007: Observations and model hindcasts. Climatic Change, 112, 791817, https://doi.org/10.1007/s10584-011-0248-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blair, D., and D. Sauchyn, 2010: Winter roads in Manitoba. The New Normal: The Canadian Prairies in a Changing Climate, D. Sauchyn, H. Diaz, and S. Kulshreshtha, Eds., CPRC Press, 322–325.

  • Bonsal, B., and A. Shabbar, 2011: Large-scale climate oscillations influencing Canada, 1900–2008. Canadian Biodiversity: Ecosystem Status and Trends 2010, Tech. Thematic Rep. 4, Canadian Councils of Resource Ministers, 20 pp., https://biodivcanada.chm-cbd.net/sites/biodivcanada/files/2018-02/974No.4_Climate%20Oscillations%20April%202011_E.pdf .

    • Search Google Scholar
    • Export Citation
  • Bonsal, B., T. D. Prowse, C. R. Duguay, and M. P. Lacroix, 2006: Impacts of large-scale teleconnections on freshwater-ice break/freeze-up dates over Canada. J. Hydrol., 330, 340353, https://doi.org/10.1016/j.jhydrol.2006.03.022.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brown, L. C., and C. R. Duguay, 2010: The response and role of ice cover in lake-climate interactions. Prog. Phys. Geogr., 34, 671704, https://doi.org/10.1177/0309133310375653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • C3S, 2017: ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store, accessed 19 May 2020, https://cds.climate.copernicus.eu/cdsapp#!/home.

  • Chiotti, Q., and B. Lavender, 2008: Ontario. From Impacts to Adaptation: Canada in a Changing Climate 2007, D. S. Lemmen et al., Eds., Government of Canada, 227274.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and et al. , 2013: Climate phenomena and their relevance for future regional climate change. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 12171308.

    • Search Google Scholar
    • Export Citation
  • CIER, 2006: Climate change impacts on ice, winter roads, access trails, and Manitoba First Nations. Accessed 16 June 2012, www.nrcan.gc.ca/earthsciences/projdb/pdf/187b_e.pdf.

  • Cohen, J., and et al. , 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627637, https://doi.org/10.1038/ngeo2234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cohen, J., and et al. , 2019: Divergent consensuses on Arctic amplification influence on midlatitude severe winter weather. Nat. Climate Change, 10, 2029, https://doi.org/10.1038/S41558-019-0662-Y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crann, C. A., R. T. Patterson, A. L. Macumber, J. M. Galloway, H. M. Roe, M. Blaauw, G. T. Swindles, and H. Falck, 2015: Sediment accumulation rates in subarctic lakes: Insights into age-depth modeling from 22 dated lake records from the Northwest Territories, Canada. Quat. Geochronol., 27, 131144, https://doi.org/10.1016/j.quageo.2015.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dibike, Y., T. Prowse, B. Bonsal, L. de Rham, and T. Saloranta, 2012: Simulation of North American lake-ice cover characteristics under contemporary and future climate conditions. Int. J. Climatol., 32, 695709, https://doi.org/10.1002/joc.2300.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Environment and Climate Change Canada, 2020: Ice thickness data. Accessed 18 April 2020, www.canada.ca/en/environment-climate-change/services/ice-forecasts-observations/latest-conditions/archive-overview/thickness-data.html.

  • FLake, 2020: Useful hints. Accessed 24 December 2020, https://flake.igb-berlin.de/site/download.

  • Furgal, C., and T. Prowse, 2008: Northern Canada. From Impacts to Adaptation: Canada in a Changing Climate 2007, D. S. Lemmen et al., Eds., Government of Canada, 57–118.

  • Fyfe, J. C., and et al. , 2013: One hundred years of Arctic surface temperature variation due to anthropogenic influence. Sci. Rep., 3, 2645, https://doi.org/10.1038/srep02645.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Galloway, J. M., A. Macumber, R. T. Patterson, H. Falck, T. Hadlari, and E. Madsen, 2010: Paleoclimatological assessment of the southern northwest territories and implications for the long-term viability of the Tibbitt to Contwoyto Winter Road, Part I: Core collection. NWT Open Rep. 2010-002, Northwest Territories Geoscience Office, 21 pp., https://carleton.ca/timpatterson/wp-content/uploads/NWT_OR_2010-002-1.pdf.

  • Gosling, S., G. McGregor, and J. Lowe, 2009: Climate change and heat-related mortality in six cities Part 2: Climate model evaluation and projected impacts from changes in the mean and variability of temperature with climate change. Int. J. Biometeor., 53, 3151, https://doi.org/10.1007/s00484-008-0189-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, E., T. M. Osborne, C. Kit Ho, and A. J. Challinor, 2013: Calibration and bias correction of climate projections for crop modelling: An idealised case study over Europe. Agric. For. Meteor., 170, 1931, https://doi.org/10.1016/j.agrformet.2012.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hjort, J., and et al. , 2018: Degrading permafrost puts Arctic infrastructure at risk by mid-century. Nat. Commun., 9, 5147, https://doi.org/10.1038/s41467-018-07557-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ho, C. K., D. B. Stephenson, M. Collins, C. A. T. Ferro, and S. J. Brown, 2012: Calibration strategies: A source of additional uncertainty in climate change projections. Bull. Amer. Meteor. Soc., 93, 2126, https://doi.org/10.1175/2011BAMS3110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hori, Y., W. A. Gough, K. Butler, and L. J. S. Tsuji, 2016: Trends in the seasonal length and opening dates of a winter road in the western James Bay region, Ontario, Canada. Theor. Appl. Climatol., 129, 13091320, https://doi.org/10.1007/s00704-016-1855-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hori, Y., V. Y. S. Cheng, W. A. Gough, J. Y. Jien, and L. J. S. Tsuji, 2018: Implications of projected climate change on winter road systems in Ontario’s Far North, Canada. Climatic Change, 148, 109122, https://doi.org/10.1007/s10584-018-2178-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Horton, R., N. C. Johnson, D. Singh, D. L. Swain, B. Rajaratnam, and N. S. Diffenbaugh, 2015: Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 522, 465469, https://doi.org/10.1038/nature14550.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, A., and et al. , 2019: Evaluating and improving the performance of three 1-D lake models in a large deep lake of the central Tibetan Plateau. J. Geophys. Res. Atmos., 124, 31433167, https://doi.org/10.1029/2018JD029610.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Summary for policymakers. Climate Change 2013: The Physical Science Basis, T. E. Stocker et al., Eds., Cambridge University Press, 1–29, www.ipcc.ch/report/ar5/wg1/.

  • IPCC, 2018: Summary for policymakers. Global Warming of 1.5°C, V. Masson-Delmotte et al., Eds., 24 pp., www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_SPM_version_report_LR.pdf.

  • IPCC, 2019: Summary for policymakers. Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds., IPCC, 36 pp., www.ipcc.ch/site/assets/uploads/sites/3/2019/11/03_SROCC_SPM_FINAL.pdf.

  • Jeffries, M. O., and K. Morris, 2006: Instantaneous daytime conductive heat flow through snow on lake ice in Alaska. Hydrol. Processes, 20, 803815, https://doi.org/10.1002/hyp.6116.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jensen, O. P., 2007: Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period. Limnol. Oceanogr., 52, 20132026, https://doi.org/10.4319/lo.2007.52.5.2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • JVTC, 2020: Tibbitt to Contwoyto Winter Road. Joint Venture Trucking Committee, accessed 23 April 2020, https://jvtcwinterroad.ca/wp-content/uploads/2021/01/2021-Winter-Road-Poster.pdf.

  • Kheyrollah Pour, H., C. R. Duguay, A. Martynov, and L. C. Brown, 2012: Simulation of surface temperature and ice cover of large northern lakes with 1-D models: A comparison with MODIS satellite data and in situ measurements. Tellus, 64A, 17614, https://doi.org/10.3402/TELLUSA.V64I0.17614.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirillin, G., J. Hochschild, D. Mironov, A. Terzhevik, S. Golosov, and G. Nützmann, 2011: FLake-Global: Online lake model with worldwide coverage. Environ. Modell. Software, 26, 683684, https://doi.org/10.1016/j.envsoft.2010.12.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kourzeneva, E., 2014: Assimilation of lake water surface temperature observations with extended Kalman filter. Tellus, 66A, 21510, https://doi.org/10.3402/tellusa.v66.21510.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kwok, R., and et al. , 2009: Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008. J. Geophys. Res., 114, C07005, https://doi.org/10.1029/2009JC005312.

    • Search Google Scholar
    • Export Citation
  • Lee, S., T. T. Gong, N. C. Johnson, S. B. Feldstein, and D. Pollard, 2011: On the possible link between tropical convection and the Northern Hemisphere Arctic surface air temperature change between 1958 and 2001. J. Climate, 24, 43504367, https://doi.org/10.1175/2011JCLI4003.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leppäranta, M., 2010: Modelling the formation and decay of lake ice. The Impact of Climate Change on European Lakes, G. George, Ed., Springer, 63–83, https://doi.org/10.1007/978-90-481-2945-4.

    • Crossref
    • Export Citation
  • Melvin, A. M., and et al. , 2017: Climate change damages to Alaska public infrastructure and the economics of proactive adaptation. Proc. Natl. Acad. Sci. USA, 114, E122E131, https://doi.org/10.1073/pnas.1611056113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meredith, M., and et al. , 2019: Polar regions. Ocean and Cryosphere in a Changing Climate, H.-O. Pörtner et al., Eds., IPCC, 118 pp., www.ipcc.ch/site/assets/uploads/sites/3/2019/11/07_SROCC_Ch03_FINAL.pdf.

  • Mironov, D. V., 2008: Parameterization of lakes in numerical weather prediction. Description of a lake model. COSMO Tech. Rep. 11, Deutscher Wetterdienst, 41 pp., www.cosmo-model.org/content/model/documentation/techReports/docs/techReport11.pdf.

  • Mullan, D., and et al. , 2017: Climate change and the long-term viability of the world’s busiest heavy haul ice road. Theor. Appl. Climatol., 129, 10891108, https://doi.org/10.1007/s00704-016-1830-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Najafi, M. R., F. W. Zwiers, and N. P. Gillett, 2015: Attribution of Arctic temperature change to greenhouse-gas and aerosol influences. Nat. Climate Change, 5, 246249, https://doi.org/10.1038/nclimate2524.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nõges, P., and T. Nõges, 2014: Weak trends in ice phenology of Estonian large lakes despite significant warming trends. Hydrobiologia, 731, 518, https://doi.org/10.1007/s10750-013-1572-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J., and et al. , 2015: The melting Arctic and mid-latitude weather patterns: Are they connected? J. Climate, 28, 79177932, https://doi.org/10.1175/JCLI-D-14-00822.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Overland, J., and et al. , 2019: The urgency of Arctic change. Polar Sci., 21, 613, https://doi.org/10.1016/J.POLAR.2018.11.008.

  • Perrin, A., and et al. , 2015: Economic implications of climate change adaptations for mine access roads in Northern Canada. Northern Climate Exchange, Yukon Research Centre, 93 pp.

  • Pietikäinen, J.-P., and et al. , 2018: The regional climate model REMO (v2015) coupled with the 1-D freshwater lake model FLake (v1): Fenno-Scandinavian climate and lakes. Geosci. Model Dev., 11, 13211342, https://doi.org/10.5194/gmd-11-1321-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prowse, T. D., B. R. Bonsal, C. R. Duguay, and M. P. Lacroix, 2007: River-ice break-up/freeze-up: A review of climatic drivers, historical trends and future predictions. Ann. Glaciol., 46, 443451, https://doi.org/10.3189/172756407782871431.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rontu, L., K. Eerola, and M. Horttanainen, 2019: Validation of lake surface state in the HIRLAM v.7.4 numerical weather prediction model against in situ measurements in Finland. Geosci. Model Dev., 12, 37073723, https://doi.org/10.5194/gmd-12-3707-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shabbar, A., and M. Khandekar, 1996: The impact of El Niño-Southern Oscillation on the temperature field over Canada. Atmos.–Ocean, 34, 401416, https://doi.org/10.1080/07055900.1996.9649570.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sim, T. G., G. T. Swindles, P. J. Morris, M. Gałka, D. Mullan, and J. M. Galloway, 2019: Pathways for ecological change in Canadian High Arctic wetlands under rapid twentieth century warming. Geophys. Res. Lett., 46, 47264737, https://doi.org/10.1029/2019GL082611.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sladen, W. E., S. A. Wolfe, and P. D. Morse, 2020: Evaluation of threshold freezing conditions for winter road construction over discontinuous permafrost peatlands, subarctic Canada. Cold Reg. Sci. Technol., 170, 102930, https://doi.org/10.1016/j.coldregions.2019.102930.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swindles, G. T., and et al. , 2015: The long-term fate of permafrost peatlands under rapid climate warming. Sci. Rep., 5, 17951, https://doi.org/10.1038/srep17951.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Timmermann, A., and et al. , 2018: El Niño–Southern Oscillation complexity. Nature, 559, 535545, https://doi.org/10.1038/s41586-018-0252-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van Vuuren, D. P., and et al. , 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, https://doi.org/10.1007/s10584-011-0148-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weedon, G. P., G. Balsamo, N. Bellouin, S. Gomes, M. J. Best, and P. Viterbo, 2014: The WFDEI meteorological forcing data set: WATCH forcing data methodology applied to ERA-Interim reanalysis data. Water Resour. Res., 50, 75057514, https://doi.org/10.1002/2014WR015638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yang, W., and G. Magnusdottir, 2018: Year-to-year variability in Arctic minimum sea ice extent and its preconditions in observations and the CESM large ensemble simulations. Sci. Rep., 8, 9070, https://doi.org/10.1038/s41598-018-27149-y.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., B. Cheng, E. Kourzeneva, T. Semmler, L. Rontu, M. Leppäranta, K. Shirasawa, and Z. J. Li, 2013: Modelling experiments on air-snow-ice interactions over Kilpisjärvi, a lake in northern Finland. Boreal Environ. Res., 18, 341358.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 7 7 0
Full Text Views 548 548 62
PDF Downloads 164 164 60

Examining the Viability of the World’s Busiest Winter Road to Climate Change Using a Process-Based Lake Model

View More View Less
  • 1 Geography, School of Natural and Built Environment, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
  • | 2 Department of Natural Science, Manchester Metropolitan University, Manchester, United Kingdom
  • | 3 Geography, School of Natural and Built Environment, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
  • | 4 Geological Survey of Canada, Calgary, Alberta, Canada
  • | 5 Geography, School of Natural and Built Environment, Queen’s University Belfast, Belfast, Northern Ireland, United Kingdom
  • | 6 Geography, School of Natural and Built Environment, Queen’s University Belfast, Belfast, United Kingdom, and Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, Ontario, Canada
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Winter roads play a vital role in linking communities and building economies in the northern high latitudes. With these regions warming 2–3 times faster than the global average, climate change threatens the long-term viability of these important seasonal transport routes. We examine how climate change will impact the world’s busiest heavy-haul winter road—the Tibbitt to Contwoyto Winter Road (TCWR) in northern Canada. The FLake freshwater lake model is used to project ice thickness for a lake at the start of the TCWR—first using observational climate data, and second using modeled future climate scenarios corresponding to varying rates of warming ranging from 1.5° to 4°C above preindustrial temperatures. Our results suggest that 2°C warming could be a tipping point for the viability of the TCWR, requiring at best costly adaptation and at worst alternative forms of transportation. Containing warming to the more ambitious temperature target of 1.5°C pledged at the 2016 Paris Agreement may be the only way to keep the TCWR viable—albeit with a shortened annual operational season relative to present. More widely, we show that higher regional winter warming across much of the rest of Arctic North America threatens the long-term viability of winter roads at a continental scale. This underlines the importance of continued global efforts to curb greenhouse gas emissions to avoid many long-term and irreversible impacts of climate change.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: D. J. Mullan, d.mullan@qub.ac.uk

Abstract

Winter roads play a vital role in linking communities and building economies in the northern high latitudes. With these regions warming 2–3 times faster than the global average, climate change threatens the long-term viability of these important seasonal transport routes. We examine how climate change will impact the world’s busiest heavy-haul winter road—the Tibbitt to Contwoyto Winter Road (TCWR) in northern Canada. The FLake freshwater lake model is used to project ice thickness for a lake at the start of the TCWR—first using observational climate data, and second using modeled future climate scenarios corresponding to varying rates of warming ranging from 1.5° to 4°C above preindustrial temperatures. Our results suggest that 2°C warming could be a tipping point for the viability of the TCWR, requiring at best costly adaptation and at worst alternative forms of transportation. Containing warming to the more ambitious temperature target of 1.5°C pledged at the 2016 Paris Agreement may be the only way to keep the TCWR viable—albeit with a shortened annual operational season relative to present. More widely, we show that higher regional winter warming across much of the rest of Arctic North America threatens the long-term viability of winter roads at a continental scale. This underlines the importance of continued global efforts to curb greenhouse gas emissions to avoid many long-term and irreversible impacts of climate change.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: D. J. Mullan, d.mullan@qub.ac.uk
Save