• Adams, B., and K. Judd, 2016: 2030 agenda and the SDGs: Indicator framework, monitoring and reporting. Global Policy Watch, No. 10, Global Policy Forum, New York, NY, 5 pp., www.2030agenda.de/sites/default/files/GPW10_2016_03_18.pdf.

    • Search Google Scholar
    • Export Citation
  • Ahsan, M. N., A. Khatun, M. S. Islam, K. Vink, M. Oohara, and B. S. Fakhruddin, 2020: Preferences for improved early warning services among coastal communities at risk in cyclone prone south-west region of Bangladesh. Prog. Disaster Sci., 5, 100065, https://doi.org/10.1016/j.pdisas.2020.100065.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Anaman, K. A., S. C. Lellyett, L. Drake, R. J. Leigh, A. Henderson-Sellers, P. F. Noar, P. J. Sullivan, and D. J. Thampapillai, 1998: Benefits of meteorological services: Evidence from recent research in Australia. Meteor. Appl., 5, 103115, https://doi.org/10.1017/S1350482798000668.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arrow, K., R. Solow, P. R. Portney, E. E. Leamer, R. Radner, and H. Schuman, 1993: Report of the NOAA panel on contingent valuation. Fed. Regist., 58, 46014614.

    • Search Google Scholar
    • Export Citation
  • Boyle, K. J., M. P. Welsh, and R. C. Bishop, 1988: Validation of empirical measures of welfare change. Land Econ., 64, 9498, https://doi.org/10.2307/3146613.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Broad, K., A. Leiserowitz, J. Weinkle, and M. Steketee, 2007: Misinterpretations of the “cone of uncertainty” in Florida during the 2004 hurricane season. Bull. Amer. Meteor. Soc., 88, 651668, https://doi.org/10.1175/BAMS-88-5-651.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carson, R. T., and W. M. Hanneman, 2005: Contingent valuation. Handbook of Environmental Economics, Vol. 2., K. G. Mäler and J. R. Vincent, Eds., Elsevier, 821936, https://doi.org/10.1016/S1574-0099(05)02017-6.

    • Search Google Scholar
    • Export Citation
  • Carson, R. T., T. Groves, and J. A. List, 2014: Consequentiality: A theoretical and experimental exploration of a single binary choice. J. Assoc. Environ. Resour. Econ., 1, 171207, https://doi.org/10.1086/676450.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., and J. Kaplan, 1994: A Statistical Hurricane Intensity Prediction Scheme (SHIPS) for the Atlantic basin. Wea. Forecasting, 9, 209220, https://doi.org/10.1175/1520-0434(1994)009<0209:ASHIPS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., J. A. Knaff, R. Knabb, C. Lauer, C. R. Sampson, and R. T. DeMaria, 2009: A new method for estimating tropical cyclone wind speed probabilities. Wea. Forecasting, 24, 15731591, https://doi.org/10.1175/2009WAF2222286.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Drupp, M. A., M. C. Freeman, B. Groom, and F. Nesje, 2018: Discounting disentangled. Amer. Econ. J. Econ. Policy, 10, 109134, https://doi.org/10.1257/pol.20160240.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686688, https://doi.org/10.1038/nature03906.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ewing, B. T., J. B. Kruse, and D. Sutter, 2007: Hurricanes and economic research: An introduction to the Hurricane Katrina symposium. South. Econ. J., 74, 315325.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gaddis, E. B., B. Miles, S. Morse, and D. Lewis, 2007: Full-cost accounting of coastal disasters in the United States: Implications for planning and preparedness. Ecol. Econ., 63, 307318, https://doi.org/10.1016/j.ecolecon.2007.01.015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gall, R., J. Franklin, F. Marks, E. N. Rappaport, and F. Toepfer, 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329343, https://doi.org/10.1175/BAMS-D-12-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giguere, C., C. Moore, and J. C. Whitehead, 2020: Valuing hemlock woolly adelgid control in public forests: Scope effects with attribute nonattendance. Land Econ., 96, 2542, https://doi.org/10.3368/le.96.1.25.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gladwin, H., J. K. Lazo, B. H. Morrow, W. G. Peacock, and H. E. Willoughby, 2007: Social science research needs for the hurricane forecast and warning system. Nat. Hazards Rev., 8, 8795, https://doi.org/10.1061/(ASCE)1527-6988(2007)8:3(87).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hammitt, J. K., and D. Herrera-Araujo, 2018: Peeling back the onion: Using latent class analysis to uncover heterogeneous responses to stated preference surveys. J. Environ. Econ. Manage., 87, 165189, https://doi.org/10.1016/j.jeem.2017.06.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hanemann, M., J. Loomis, and B. Kanninen, 1991: Statistical efficiency of double-bounded dichotomous choice contingent valuation. Amer. J. Agric. Econ., 73, 12551263, https://doi.org/10.2307/1242453.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Heberlein, T. A., M. A. Wilson, R. C. Bishop, and N. C. Schaeffer, 2005: Rethinking the scope test as a criterion for validity in contingent valuation. J. Environ. Econ. Manage., 50, 122, https://doi.org/10.1016/j.jeem.2004.09.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacquemet, N., R.-V. Joule, S. Luchini, and J. F. Shogren, 2013: Preference elicitation under oath. J. Environ. Econ. Manage., 65, 110132, https://doi.org/10.1016/j.jeem.2012.05.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanninen, B. J., 1993: Optimal experimental design for double-bounded dichotomous choice contingent valuation. Land Econ., 69, 138146, https://doi.org/10.2307/3146514.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Landsea, C. W., and J. P. Cangialosi, 2018: Have we reached the limits of predictability for tropical cyclone track forecasting? Bull. Amer. Meteor. Soc., 99, 22372243, https://doi.org/10.1175/BAMS-D-17-0136.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazo, J. K., and D. M. Waldman, 2011: Valuing improved hurricane forecasts. Econ. Lett., 111, 4346, https://doi.org/10.1016/j.econlet.2010.12.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lazo, J. K., R. E. Morss, and J. L. Demuth, 2009: 300 billion served: Sources, perceptions, uses, and values of weather forecasts. Bull. Amer. Meteor. Soc., 90, 785798, https://doi.org/10.1175/2008BAMS2604.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Letson, D., D. S. Sutter, and J. K. Lazo, 2007: Economic value of hurricane forecasts: An overview and research needs. Nat. Hazards Rev., 8, 7886, https://doi.org/10.1061/(ASCE)1527-6988(2007)8:3(78).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewbel, A., D. McFadden, and O. Linton, 2011: Estimating features of a distribution from binomial data. J. Econ., 162, 170188, https://doi.org/10.1016/j.jeconom.2010.11.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lonfat, M., R. Rogers, T. Marchok, and F. D. Marks Jr., 2007: A parametric model for predicting hurricane rainfall. Mon. Wea. Rev., 135, 30863097, https://doi.org/10.1175/MWR3433.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., and et al. , 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305323, https://doi.org/10.1175/1520-0477(1998)079<0305:LTCFPA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., B. D. McNoldy, M.-C. Ko, and A. B. Schumacher, 2020: Development of a probabilistic tropical cyclone rainfall model: P-rain. Tropical Meteorology and Tropical Cyclones Symp., Boston, MA, Amer. Meteor. Soc., 367310, https://ams.confex.com/ams/2020Annual/webprogram/Paper367310.html.

    • Search Google Scholar
    • Export Citation
  • Martinez, A. B., 2020: Forecast accuracy matters for hurricane damage. Econometrics, 8, 18, https://doi.org/10.3390/econometrics8020018.

  • Mozumder, P., W. F. Vásquez, and A. Marathe, 2011: Consumers’ preference for renewable energy in the southwest USA. Energy Econ., 33, 11191126, https://doi.org/10.1016/j.eneco.2011.08.003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mozumder, P., A. G. Chowdhury, W. F. Vásquez, and E. Flugman, 2015: Household preferences for a hurricane mitigation fund in Florida. Nat. Hazards Rev., 16, 04014031, https://doi.org/10.1061/(ASCE)NH.1527-6996.0000170.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Murnane, R., and J. Elsner, 2012: Maximum wind speeds and us hurricane losses. Geophys. Res. Lett., 39, L16707, https://doi.org/10.1029/2012GL052740.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, T. C., J. Robinson, S. Kaneko, and S. Komatsu, 2013: Estimating the value of economic benefits associated with adaptation to climate change in a developing country: A case study of improvements in tropical cyclone warning services. Ecol. Econ., 86, 117128, https://doi.org/10.1016/j.ecolecon.2012.11.009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • OFCM, 2020: The Federal Weather Enterprise: Fiscal year 2020 budget and coordination report. Tech. Rep. FCM-R38-2020, 38 pp., www.icams-portal.gov/publications/fedrep/2021_fedrep.pdf.

    • Search Google Scholar
    • Export Citation
  • Penn, J., and W. Hu, 2019: Cheap talk efficacy under potential and actual hypothetical bias: A meta-analysis. J. Environ. Econ. Manage., 96, 2235, https://doi.org/10.1016/j.jeem.2019.02.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quiring, S. M., A. B. Schumacher, and S. D. Guikema, 2014: Incorporating hurricane forecast uncertainty into a decision-support application for power outage modeling. Bull. Amer. Meteor. Soc., 95, 4758, https://doi.org/10.1175/BAMS-D-12-00012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Regnier, E., 2008: Public evacuation decisions and hurricane track uncertainty. Manage. Sci., 54, 1628, https://doi.org/10.1287/mnsc.1070.0764.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, V. K., and L. L. Osborne, 1996: Do contingent valuation estimates pass a “scope” test? A meta-analysis. J. Environ. Econ. Manage., 31, 287301, https://doi.org/10.1006/jeem.1996.0045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, S., and R. Berg, 2019: National Hurricane Center Tropical Cyclone Report: Hurricane Florence (AL062018). NOAA/National Weather Service, 98 pp., www.nhc.noaa.gov/data/tcr/AL062018_Florence.pdf.

  • Trumbo, C. W., L. Peek, M. A. Meyer, H. L. Marlatt, E. Gruntfest, B. D. McNoldy, and W. H. Schubert, 2016: A cognitive-affective scale for hurricane risk perception. Risk Anal., 36, 22332246, https://doi.org/10.1111/risa.12575.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vossler, C. A., and S. B. Watson, 2013: Understanding the consequences of consequentiality: Testing the validity of stated preferences in the field. J. Econ. Behav. Organ., 86, 137147, https://doi.org/10.1016/j.jebo.2012.12.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vossler, C. A., M. Doyon, and D. Rondeau, 2012: Truth in consequentiality: Theory and field evidence on discrete choice experiments. Amer. Econ. J. Microecon., 4, 145171, https://doi.org/10.1257/mic.4.4.145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinkle, J., C. Landsea, D. Collins, R. Musulin, R. P. Crompton, P. J. Klotzbach, and R. Pielke, 2018: Normalized hurricane damage in the continental United States 1900–2017. Nat. Sustainability, 1, 808813, https://doi.org/10.1038/s41893-018-0165-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 7 7 0
Full Text Views 882 882 99
PDF Downloads 485 485 56

Striving for Improvement: The Perceived Value of Improving Hurricane Forecast Accuracy

View More View Less
  • 1 Department of Environmental Science and Policy, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, and Department of Economics, Miami Herbert Business School, University of Miami, Coral Gables, Florida
  • | 2 Department of Environmental Science and Policy, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 3 Department of Atmospheric Science, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • | 4 Department of Earth and Environment, and Department of Economics, Florida International University, Miami, Florida
  • | 5 Department of Environmental Science and Policy, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Hurricanes are the costliest type of natural disaster in the United States. Every year, these natural phenomena destroy billions of dollars in physical capital, displace thousands, and greatly disrupt local economies. While this damage will never be eliminated, the number of fatalities and the cost of preparing and evacuating can be reduced through improved forecasts. This paper seeks to establish the public’s willingness to pay for further improvement of hurricane forecasts by integrating atmospheric modeling and a double-bounded dichotomous choice method in a large-scale contingent valuation experiment. Using an interactive survey, we focus on areas affected by hurricanes in 2018 to elicit residents’ willingness to pay for improvements along storm track, wind speed, and precipitation forecasts. Our results indicate improvements in wind speed forecast are valued the most, followed by storm track and precipitation, and that maintaining the current annual rate of error reduction for another decade is worth between $90.25 and $121.86 per person in vulnerable areas. Our study focuses on areas recently hit by hurricanes in the United States, but the implications of our results can be extended to areas vulnerable to tropical cyclones globally. In a world where the intensity of hurricanes is expected to increase and research funds are limited, these results can inform relevant agencies regarding the effectiveness of different private and public adaptive actions, as well as the value of publicly funded hurricane research programs.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Renato Molina, renato.molina@rsmas.miami.edu

Abstract

Hurricanes are the costliest type of natural disaster in the United States. Every year, these natural phenomena destroy billions of dollars in physical capital, displace thousands, and greatly disrupt local economies. While this damage will never be eliminated, the number of fatalities and the cost of preparing and evacuating can be reduced through improved forecasts. This paper seeks to establish the public’s willingness to pay for further improvement of hurricane forecasts by integrating atmospheric modeling and a double-bounded dichotomous choice method in a large-scale contingent valuation experiment. Using an interactive survey, we focus on areas affected by hurricanes in 2018 to elicit residents’ willingness to pay for improvements along storm track, wind speed, and precipitation forecasts. Our results indicate improvements in wind speed forecast are valued the most, followed by storm track and precipitation, and that maintaining the current annual rate of error reduction for another decade is worth between $90.25 and $121.86 per person in vulnerable areas. Our study focuses on areas recently hit by hurricanes in the United States, but the implications of our results can be extended to areas vulnerable to tropical cyclones globally. In a world where the intensity of hurricanes is expected to increase and research funds are limited, these results can inform relevant agencies regarding the effectiveness of different private and public adaptive actions, as well as the value of publicly funded hurricane research programs.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Renato Molina, renato.molina@rsmas.miami.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.55 MB)
Save