• Abudu, S., C. L. Cui, J. P. King, J. Moreno, and A. S. Bawazir, 2011: Modeling of daily pan evaporation using partial least squares regression. Sci. China Technol. Sci., 54, 163174, https://doi.org/10.1007/s11431-010-4205-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Achakulwisut, P., L. Shen, and L. J. Mickley, 2017: What controls springtime fine dust variability in the western United States? Investigating the 2002–2015 increase in fine dust in the US southwest. J. Geophys. Res. Atmos., 122, 12 44912 467, https://doi.org/10.1002/2017JD027208.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Adams, A. M., J. M. Prospero, and C. D. Zhang, 2012: CALIPSO-derived three-dimensional structure of aerosol over the Atlantic Basin and adjacent continents. J. Climate, 25, 68626879, https://doi.org/10.1175/JCLI-D-11-00672.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bercos-Hickey, E., T. R. Nathan, and S. H. Chen, 2017: Saharan dust and the African easterly jet-African easterly wave system: Structure, location and energetics. Quart. J. Roy. Meteor. Soc., 143, 27972808, https://doi.org/10.1002/qj.3128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bercos-Hickey, E., T. R. Nathan, and S. H. Chen, 2020: On the relationship between the African easterly jet, Saharan mineral dust aerosols, and West African precipitation. J. Climate, 33, 35333546, https://doi.org/10.1175/JCLI-D-18-0661.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Braun, S. A., 2010: Reevaluating the role of the Saharan air layer in Atlantic tropical cyclogenesis and evolution. Mon. Wea. Rev., 138, 20072037, https://doi.org/10.1175/2009MWR3135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bristow, C. S., K. A. Hudson-Edwards, and A. Chappell, 2010: Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophys. Res. Lett., 37, L14807, https://doi.org/10.1029/2010GL043486.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carlson, T. N., and J. Prospero, 1972: The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J. Appl. Meteor., 11, 283297, https://doi.org/10.1175/1520-0450(1972)011<0283:TLSMOS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, S. P., C. H. Lu, J. McQueen, and P. Lee, 2018: Application of satellite observations in conjunction with aerosol reanalysis tor to characterize long-range transport of African and Asian dust on air quality in the contiguous US. Atmos. Environ., 187, 174195, https://doi.org/10.1016/j.atmosenv.2018.05.038.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Colarco, P. R., and et al. , 2003: Saharan dust transport to the Caribbean during PRIDE: 2. Transport, vertical profiles, and deposition in simulations of in situ and remote sensing observations. J. Geophys. Res., 108, 8590, https://doi.org/10.1029/2002JD002659.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., 1999: Generation of the African easterly jet and its role in determining West African precipitation. J. Climate, 12, 11651184, https://doi.org/10.1175/1520-0442(1999)012<1165:GOTAEJ>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, K. H., and E. K. Vizy, 2010: Hydrodynamics of the Caribbean low-level jet and its relationship to precipitation. J. Climate, 23, 14771494, https://doi.org/10.1175/2009JCLI3210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Corrales-Suastegui, A., R. Fuentes-Franco, and E. G. Pavia, 2020: The mid-summer drought over Mexico and Central America in the 21st century. Int. J. Climatol., 40, 17031715, https://doi.org/10.1002/joc.6296.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didan, K., 2015a: MOD13C1 MODIS/Terra Vegetation Indices 16-Day L3 Global 0.05Deg CMG V006. NASA EOSDIS Land Processes DAAC, accessed September 2020, https://doi.org/10.5067/MODIS/MOD13C1.006.

    • Search Google Scholar
    • Export Citation
  • Didan, K., 2015b: MOD13C2 MODIS/Terra Vegetation Indices Monthly L3 Global 0.05Deg CMG V006. NASA EOSDIS Land Processes DAAC, accessed September 2020, https://doi.org/10.5067/MODIS/MOD13C2.006.

    • Search Google Scholar
    • Export Citation
  • Doherty, O. M., N. Riemer, and S. Hameed, 2008: Saharan mineral dust transport into the Caribbean: Observed atmospheric controls and trends. J. Geophys. Res., 113, D07211, https://doi.org/10.1029/2007JD009171.

    • Search Google Scholar
    • Export Citation
  • Doherty, O. M., N. Riemer, and S. Hameed, 2014: Role of the convergence zone over West Africa in controlling Saharan mineral dust load and transport in the boreal summer. Tellus, 66B, 23191, https://doi.org/10.3402/tellusb.v66.23191.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., 2011: Rewriting the climatology of the tropical North Atlantic and Caribbean Sea atmosphere. J. Climate, 24, 893908, https://doi.org/10.1175/2010JCLI3496.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353366, https://doi.org/10.1175/BAMS-85-3-353.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Engelstaedter, S., and R. Washington, 2007: Atmospheric controls on the annual cycle of North African dust. J. Geophys. Res., 112, D03103, https://doi.org/10.1029/2006JD007195.

    • Search Google Scholar
    • Export Citation
  • Engelstaedter, S., I. Tegen, and R. Washington, 2006: North African dust emissions and transport. Earth-Sci. Rev., 79, 73100, https://doi.org/10.1016/j.earscirev.2006.06.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., J. Dunion, J. A. Foley, A. K. Heidinger, and C. S. Velden, 2006: New evidence for a relationship between Atlantic tropical cyclone activity and African dust outbreaks. Geophys. Res. Lett., 33, L19813, https://doi.org/10.1029/2006GL026408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evan, A. T., C. Flamant, M. Gaetani, and F. Guichard, 2016: The past, present and future of African dust. Nature, 531, 493495, https://doi.org/10.1038/nature17149.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, S., S. Malyshev, P. Ginoux, and E. Shevliakova, 2019: The impacts of the dust radiative effect on vegetation growth in the Sahel. Global Biogeochem. Cycles, 33, 15821593, https://doi.org/10.1029/2018GB006128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fécan, F., B. Marticorena, and G. Bergametti, 1999: Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann. Geophys., 17, 149157, https://doi.org/10.1007/s00585-999-0149-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Francis, D., R. Fonseca, N. Nelli, J. Cuesta, M. Weston, A. Evan, and M. Temimi, 2020: The atmospheric drivers of the major Saharan dust storm in June 2020. Geophys. Res. Lett., 47, e2020GL090102, https://doi.org/10.1029/2020GL090102.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and et al. , 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ginoux, P., and O. Torres, 2003: Empirical TOMS index for dust aerosol: Applications to model validation and source characterization. J. Geophys. Res., 108, 4534, https://doi.org/10.1029/2003JD003470.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ginoux, P., J. M. Prospero, T. E. Gill, N. C. Hsu, and M. Zhao, 2012a: Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS deep blue aerosol products. Rev. Geophys., 50, RG3005, https://doi.org/10.1029/2012RG000388.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ginoux, P., L. Clarisse, C. Clerbaux, P. F. Coheur, O. Dubovik, N. C. Hsu, and M. Van Damme, 2012b: Mixing of dust and NH3 observed globally over anthropogenic dust sources. Atmos. Chem. Phys., 12, 73517363, https://doi.org/10.5194/acp-12-7351-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Groß, S., V. Freudenthaler, K. Schepanski, C. Toledano, A. Schafler, A. Ansmann, and B. Weinzierl, 2015: Optical properties of long-range transported Saharan dust over Barbados as measured by dual-wavelength depolarization Raman lidar measurements. Atmos. Chem. Phys., 15, 11 06711 080, https://doi.org/10.5194/acp-15-11067-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarig, M., and et al. , 2017: Triple-wavelength depolarization-ratio profiling of Saharan dust over Barbados during SALTRACE in 2013 and 2014. Atmos. Chem. Phys., 17, 10 76710 794, https://doi.org/10.5194/acp-17-10767-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hand, J. L., and et al. , 2011: Spatial and seasonal patterns and temporal variability of haze and its constituents in the United States. IMPROVE Rep. 5, 207 pp., accessed September 2020, http://vista.cira.colostate.edu/Improve/improve-reports/.

    • Search Google Scholar
    • Export Citation
  • Hand, J. L., T. E. Gill, and B. A. Schichtel, 2017: Spatial and seasonal variability in fine mineral dust and coarse aerosol mass at remote sites across the United States. J. Geophys. Res. Atmos., 122, 30803097, https://doi.org/10.1002/2016JD026290.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hersbach, H., and et al. , 2020: The ERA5 global reanalysis. Quart. J. Roy. Meteor. Soc., 146, 19992049, https://doi.org/10.1002/qj.3803.

  • Holben, B. N., and et al. , 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116, https://doi.org/10.1016/S0034-4257(98)00031-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and et al. , 2001: An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET. J. Geophys. Res., 106, 12 06712 097, https://doi.org/10.1029/2001JD900014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, N. C., J. Lee, A. M. Sayer, W. Kim, C. Bettenhausen, and S. C. Tsay, 2019: VIIRS deep blue aerosol products over land: Extending the EOS long-term aerosol data records. J. Geophys. Res. Atmos., 124, 40264053, https://doi.org/10.1029/2018JD029688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huete, A., K. Didan, T. Miura, E. P. Rodriguez, X. Gao, and L. G. Ferreira, 2002: Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ., 83, 195213, https://doi.org/10.1016/S0034-4257(02)00096-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G., E. F. Stocker, D. T. Bolvin, E. J. Nelkin, and J. Tan, 2019: GPM IMERG Late Precipitation L3 1 day 0.1 degree × 0.1 degree V06. Goddard Earth Sciences Data and Information Services Center (GES DISC), accessed September 2020, https://doi.org/10.5067/GPM/IMERGDL/DAY/06.

    • Crossref
    • Export Citation
  • Huneeus, N., and et al. , 2011: Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys., 11, 77817816, https://doi.org/10.5194/acp-11-7781-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, Q., J. Wei, W. Lau, B. Pu, and C. Wang, 2021: Interactions of Asian mineral dust with Indian summer monsoon: Recent advances and challenges. Earth-Sci. Rev., 215, 103562, https://doi.org/10.1016/j.earscirev.2021.103562.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jones, C., N. Mahowald, and C. Luo, 2003: The role of easterly waves on African desert dust transport. J. Climate, 16, 36173628, https://doi.org/10.1175/1520-0442(2003)016<3617:TROEWO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and T. N. Carlson, 1988: Analysis and numerical simulations of the Saharan air layer and its effect on easterly wave disturbances. J. Atmos. Sci., 45, 31023136, https://doi.org/10.1175/1520-0469(1988)045<3102:AANSOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karyampudi, V. M., and H. F. Pierce, 2002: Synoptic-scale influence of the Saharan air layer on tropical cyclogenesis over the eastern Atlantic. Mon. Wea. Rev., 130, 31003128, https://doi.org/10.1175/1520-0493(2002)130<3100:SSIOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, D., and et al. , 2014: Sources, sinks, and transatlantic transport of North African dust aerosol: A multimodel analysis and comparison with remote sensing data. J. Geophys. Res. Atmos., 119, 62596277, https://doi.org/10.1002/2013JD021099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, M. H., and et al. , 2018: The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech., 11, 61076135, https://doi.org/10.5194/amt-11-6107-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Largeron, Y., F. Guichard, D. Bouniol, F. Couvreux, L. Kergoat, and B. Marticorena, 2015: Can we use surface wind fields from meteorological reanalyses for Sahelian dust emission simulations? Geophys. Res. Lett., 42, 24902499, https://doi.org/10.1002/2014GL062938.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leroux, S., and N. M. J. Hall, 2009: On the relationship between African easterly waves and the African easterly jet. J. Atmos. Sci., 66, 23032316, https://doi.org/10.1175/2009JAS2988.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, F. Y., P. Ginoux, and V. Ramaswamy, 2010: Transport of Patagonian dust to Antarctica. J. Geophys. Res., 115, D18217, https://doi.org/10.1029/2009JD012356.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W. H., L. F. Li, R. Fu, Y. Deng, and H. Wang, 2011: Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J. Climate, 24, 14991506, https://doi.org/10.1175/2010JCLI3829.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Li, W. H., L. F. Li, M. F. Ting, and Y. M. Liu, 2012: Intensification of Northern Hemisphere subtropical highs in a warming climate. Nat. Geosci., 5, 830834, https://doi.org/10.1038/ngeo1590.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mahowald, N. M., and et al. , 2010: Observed 20th century desert dust variability: Impact on climate and biogeochemistry. Atmos. Chem. Phys., 10, 10 87510 893, https://doi.org/10.5194/acp-10-10875-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Malm, W. C., J. F. Sisler, D. Huffman, R. A. Eldred, and T. A. Cahill, 1994: Spatial and seasonal trends in particle concentration and optical extinction in the United-States. J. Geophys. Res., 99, 13471370, https://doi.org/10.1029/93JD02916.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martin, E. R., and C. Schumacher, 2011: The Caribbean low-level jet and its relationship with precipitation in IPCC AR4 models. J. Climate, 24, 59355950, https://doi.org/10.1175/JCLI-D-11-00134.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meng, L., H. W. Gao, Y. Yu, X. H. Yao, Y. Gao, C. Zhang, and L. Fang, 2017: A new approach developed to study variability in North African dust transport routes over the Atlantic during 2001-2015. Geophys. Res. Lett., 44, 10 02610 035, https://doi.org/10.1002/2017GL074478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miller, R. L., and I. Tegen, 1998: Climate response to soil dust aerosols. J. Climate, 11, 32473267, https://doi.org/10.1175/1520-0442(1998)011<3247:CRTSDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Morman, S. A., and G. S. Plumlee, 2013: The role of airborne mineral dusts in human disease. Aeolian Res., 9, 203212, https://doi.org/10.1016/j.aeolia.2012.12.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moulin, C., and I. Chiapello, 2004: Evidence of the control of summer atmospheric transport of African dust over the Atlantic by Sahel sources from TOMS satellites (1979–2000). Geophys. Res. Lett., 31, L02107, https://doi.org/10.1029/2003GL018931.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moulin, C., C. E. Lambert, F. Dulac, and U. Dayan, 1997: Control of atmospheric export of dust from North Africa by the North Atlantic oscillation. Nature, 387, 691694, https://doi.org/10.1038/42679.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mulitza, S., and et al. , 2010: Increase in African dust flux at the onset of commercial agriculture in the Sahel region. Nature, 466, 226228, https://doi.org/10.1038/nature09213.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ott, S. T., A. Ott, D. W. Martin, and J. A. Young, 1991: Analysis of a trans-Atlantic Saharan dust outbreak based on satellite and gate data. Mon. Wea. Rev., 119, 18321850, https://doi.org/10.1175/1520-0493(1991)119<1832:AOATAS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, K. D., T. A. Cahill, R. A. Eldred, D. D. Dutcher, and T. E. Gill, 1997: Long-range transport of North African dust to the eastern United States. J. Geophys. Res., 102, 11 22511 238, https://doi.org/10.1029/97JD00260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and T. N. Carlson, 1972: Vertical and areal distribution of Saharan dust over western equatorial North-Atlantic Ocean. J. Geophys. Res., 77, 52555265, https://doi.org/10.1029/JC077i027p05255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and T. N. Carlson, 1981: Saharan air outbreaks over the tropical North-Atlantic. Pure Appl. Geophys., 119, 677691, https://doi.org/10.1007/BF00878167.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and P. J. Lamb, 2003: African droughts and dust transport to the Caribbean: Climate change implications. Science, 302, 10241027, https://doi.org/10.1126/science.1089915.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and O. L. Mayol-Bracero, 2013: Understanding the transport and impact of African dust on the Caribbean basin. Bull. Amer. Meteor. Soc., 94, 13291337, https://doi.org/10.1175/BAMS-D-12-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., I. Olmez, and M. Ames, 2001: Al and Fe in PM 2.5 and PM 10 suspended particles in south-central Florida: The impact of the long range transport of African mineral dust. Water Air Soil Pollut., 125, 291317, https://doi.org/10.1023/A:1005277214288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., P. Ginoux, O. Torres, S. E. Nicholson, and T. E. Gill, 2002: Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys., 40, 1002, https://doi.org/10.1029/2000RG000095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., F. X. Collard, J. Molinie, and A. Jeannot, 2014: Characterizing the annual cycle of African dust transport to the Caribbean Basin and South America and its impact on the environment and air quality. Global Biogeochem. Cycles, 28, 757773, https://doi.org/10.1002/2013GB004802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, B., and P. Ginoux, 2017: Projection of American dustiness in the late 21st century due to climate change. Sci. Rep., 7, 5553, https://doi.org/10.1038/s41598-017-05431-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, B., and P. Ginoux, 2018a: How reliable are CMIP5 models in simulating dust optical depth? Atmos. Chem. Phys., 18, 12 49112 510, https://doi.org/10.5194/acp-18-12491-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, B., and P. Ginoux, 2018b: Climatic factors contributing to long-term variations in surface fine dust concentration in the United States. Atmos. Chem. Phys., 18, 42014215, https://doi.org/10.5194/acp-18-4201-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raj, J., H. K. Bangalath, and G. Stenchikov, 2019: West African monsoon: Current state and future projections in a high-resolution AGCM. Climate Dyn., 52, 64416461, https://doi.org/10.1007/s00382-018-4522-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ridley, D. A., C. L. Heald, and J. M. Prospero, 2014: What controls the recent changes in African mineral dust aerosol across the Atlantic? Atmos. Chem. Phys., 14, 57355747, https://doi.org/10.5194/acp-14-5735-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodríguez, S., and et al. , 2015: Modulation of Saharan dust export by the North African dipole. Atmos. Chem. Phys., 15, 74717486, https://doi.org/10.5194/acp-15-7471-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc., 72, 18481866, https://doi.org/10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sayer, A. M., N. C. Hsu, J. Lee, W. V. Kim, and S. T. Dutcher, 2019: Validation, stability, and consistency of MODIS collection 6.1 and VIIRS version 1 deep blue aerosol data over land. J. Geophys. Res. Atmos., 124, 46584688, https://doi.org/10.1029/2018JD029598.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schepanski, K., I. Tegen, and A. Macke, 2009: Saharan dust transport and deposition towards the tropical northern Atlantic. Atmos. Chem. Phys., 9, 11731189, https://doi.org/10.5194/acp-9-1173-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schepanski, K., B. Heinold, and I. Tegen, 2017: Harmattan, Saharan heat low, and West African monsoon circulation: Modulations on the Saharan dust outflow towards the North Atlantic. Atmos. Chem. Phys., 17, 10 22310 243, https://doi.org/10.5194/acp-17-10223-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schweitzer, M. D., and et al. , 2018: Lung health in era of climate change and dust storms. Environ. Res., 163, 3642, https://doi.org/10.1016/j.envres.2018.02.001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skinner, C. B., and N. S. Diffenbaugh, 2014: Projected changes in African easterly wave intensity and track in response to greenhouse forcing. Proc. Natl. Acad. Sci. USA, 111, 68826887, https://doi.org/10.1073/pnas.1319597111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solmon, F., N. Elguindi, and M. Mallet, 2012: Radiative and climatic effects of dust over West Africa, as simulated by a regional climate model. Climate Res., 52, 97113, https://doi.org/10.3354/cr01039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, J. D., G. A. Vecchi, and P. Ginoux, 2018: The climatological effect of Saharan dust on global tropical cyclones in a fully coupled GCM. J. Geophys. Res. Atmos., 123, 55385559, https://doi.org/10.1029/2017JD027808.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strong, J. D., G. A. Vecchi, and P. Ginoux, 2015: The response of the tropical Atlantic and West African climate to Saharan dust in a fully coupled GCM. J. Climate, 28, 70717092, https://doi.org/10.1175/JCLI-D-14-00797.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., F. S. Whyte, T. S. Stephenson, and J. D. Campbell, 2013: Why dry? Investigating the future evolution of the Caribbean low level jet to explain projected Caribbean drying. Int. J. Climatol., 33, 784792, https://doi.org/10.1002/joc.3461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thomas, N., and S. Nigam, 2018: Twentieth-century climate change over Africa: Seasonal hydroclimate trends and Sahara Desert expansion. J. Climate, 31, 33493370, https://doi.org/10.1175/JCLI-D-17-0187.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thorncroft, C. D., and M. Blackburn, 1999: Maintenance of the African easterly jet. Quart. J. Roy. Meteor. Soc., 125, 763786, https://doi.org/10.1002/qj.49712555502.

    • Search Google Scholar
    • Export Citation
  • Veefkind, J. P., and et al. , 2012: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ., 120, 7083, https://doi.org/10.1016/j.rse.2011.09.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C. Z., 2007: Variability of the Caribbean low-level jet and its relations to climate. Climate Dyn., 29, 411422, https://doi.org/10.1007/s00382-007-0243-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, C. Z., S. F. Dong, A. T. Evan, G. R. Foltz, and S. K. Lee, 2012: Multidecadal covariability of North Atlantic sea surface temperature, African dust, Sahel rainfall, and Atlantic hurricanes. J. Climate, 25, 54045415, https://doi.org/10.1175/JCLI-D-11-00413.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weinzierl, B., and et al. , 2017: The Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment: Overview and selected highlights. Bull. Amer. Meteor. Soc., 98, 14271451, https://doi.org/10.1175/BAMS-D-15-00142.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., W. Hunt, and C. Hostetler, 2004: Status and performance of the CALIOP lidar. Proc. SPIE, 5575, 815, https://doi.org/10.1117/12.571955.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winker, D. M., W. Hunt, and M. J. McGill, 2007: Initial performance assessment of CALIOP. Geophys. Res. Lett., 34, L19803, https://doi.org/10.1029/2007GL030135.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C. L., Z. H. Lin, and X. H. Liu, 2020: The global dust cycle and uncertainty in CMIP5 (Coupled Model Intercomparison Project phase 5) models. Atmos. Chem. Phys., 20, 10 40110 425, https://doi.org/10.5194/acp-20-10401-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H. B., and et al. , 2015: The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from cloud-aerosol lidar and infrared pathfinder satellite observations. Geophys. Res. Lett., 42, 19841991, https://doi.org/10.1002/2015GL063040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yuan, T., H. Yu, M. Chin, L. A. Remer, D. McGee, and A. Evan, 2020: Anthropogenic decline of African dust: Insights from the Holocene records and beyond. Geophys. Res. Lett., 47, e2020GL089711, https://doi.org/10.1029/2020GL089711.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zender, C. S., and E. Y. Kwon, 2005: Regional contrasts in dust emission responses to climate. J. Geophys. Res., 110, D13201, https://doi.org/10.1029/2004JD005501.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 5 5 0
Full Text Views 1140 1140 143
PDF Downloads 433 433 108

A Record-Breaking Trans-Atlantic African Dust Plume Associated with Atmospheric Circulation Extremes in June 2020

View More View Less
  • 1 Department of Geography and Atmospheric Science, University of Kansas, Lawrence, Kansas
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

High concentrations of dust can affect climate and human health, yet our understanding of extreme dust events is still limited. A record-breaking trans-Atlantic African dust plume occurred during 14–28 June 2020, greatly degrading air quality over large areas of the Caribbean Basin and the United States. Daily PM2.5 concentrations exceeded 50 µg m−3 in several Gulf States, while the air quality index reached unhealthy levels for sensitive groups in more than 11 states. The magnitude and duration of aerosol optical depth over the tropical North Atlantic Ocean were the greatest ever observed during summer over the past 18 years based on satellite retrievals. This extreme trans-Atlantic dust event is associated with both enhanced dust emissions over western North Africa and atmospheric circulation extremes that favor long-range dust transport. An exceptionally strong African easterly jet and associated wave activities export African dust across the Atlantic toward the Caribbean in the middle to lower troposphere, while a westward extension of the North Atlantic subtropical high and a greatly intensified Caribbean low-level jet further transport the descended, shallower dust plume from the Caribbean Basin into the United States. Over western North Africa, increased dust emissions are associated with strongly enhanced surface winds over dust source regions and reduced vegetation coverage in the western Sahel. While there are large uncertainties associated with assessing future trends in African dust emissions, model-projected atmospheric circulation changes in a warmer future generally favor increased long-range transport of African dust to the Caribbean Basin and the United States.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bing Pu, bpu@ku.edu

Abstract

High concentrations of dust can affect climate and human health, yet our understanding of extreme dust events is still limited. A record-breaking trans-Atlantic African dust plume occurred during 14–28 June 2020, greatly degrading air quality over large areas of the Caribbean Basin and the United States. Daily PM2.5 concentrations exceeded 50 µg m−3 in several Gulf States, while the air quality index reached unhealthy levels for sensitive groups in more than 11 states. The magnitude and duration of aerosol optical depth over the tropical North Atlantic Ocean were the greatest ever observed during summer over the past 18 years based on satellite retrievals. This extreme trans-Atlantic dust event is associated with both enhanced dust emissions over western North Africa and atmospheric circulation extremes that favor long-range dust transport. An exceptionally strong African easterly jet and associated wave activities export African dust across the Atlantic toward the Caribbean in the middle to lower troposphere, while a westward extension of the North Atlantic subtropical high and a greatly intensified Caribbean low-level jet further transport the descended, shallower dust plume from the Caribbean Basin into the United States. Over western North Africa, increased dust emissions are associated with strongly enhanced surface winds over dust source regions and reduced vegetation coverage in the western Sahel. While there are large uncertainties associated with assessing future trends in African dust emissions, model-projected atmospheric circulation changes in a warmer future generally favor increased long-range transport of African dust to the Caribbean Basin and the United States.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Bing Pu, bpu@ku.edu

Supplementary Materials

    • Supplemental Materials (PDF 8.40 MB)
Save