• Balaguru, K., G. R. Foltz, L. R. Leung, J. Kaplan, W. Xu, N. Reul, and B. Chapron, 2020: Pronounced impact of salinity on rapidly intensifying tropical cyclones. Bull. Amer. Meteor. Soc., 101, E1497E1511, https://doi.org/10.1175/BAMS-D-19-0303.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bister, M., and K. A. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 233240, https://doi.org/10.1007/BF01030791.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, https://doi.org/10.1175/BAMS-88-3-357.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bukunt, B. P., and G. M. Barnes, 2015: The subtropical jet stream delivers the coup de grâce to Hurricane Felicia (2009). Wea. Forecasting, 30, 10391049, https://doi.org/10.1175/WAF-D-15-0004.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carrasco, C. A., C. W. Landsea, and Y. Lin, 2014: The influence of tropical cyclone size on its intensification. Wea. Forecasting, 29, 582590, https://doi.org/10.1175/WAF-D-13-00092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chan, K. T., and J. C. Chan, 2012: Size and strength of tropical cyclones as inferred from QuikSCAT data. Mon. Wea. Rev., 140, 811824, https://doi.org/10.1175/MWR-D-10-05062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, C.-C., and C.-C. Wu, 2017: On the processes leading to the rapid intensification of Typhoon Megi (2010). J. Atmos. Sci., 74, 11691200, https://doi.org/10.1175/JAS-D-16-0075.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chang, Y.-T., I.-I. Lin, H.-C. Huang, Y.-C. Liao, and C.-C. Lien, 2020: The association of typhoon intensity increase with translation speed increase in the South China Sea. Sustainability, 12, 939, https://doi.org/10.3390/su12030939.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chavas, D. R., and K. A. Emanuel, 2010: A QuikSCAT climatology of tropical cyclone size. Geophys. Res. Lett., 37, L18816, https://doi.org/10.1029/2010GL044558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, D. Y.-C., K. K. W. Cheung, and C.-S. Lee, 2011: Some implications of core regime wind structures in western North Pacific tropical cyclones. Wea. Forecasting, 26, 6175, https://doi.org/10.1175/2010WAF2222420.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, X., M. Xue, and J. Fang, 2018: Rapid intensification of Typhoon Mujigae (2015) under different sea surface temperatures: Structural changes leading to rapid intensification. J. Atmos. Sci., 75, 43134335, https://doi.org/10.1175/JAS-D-18-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cheng, C.-J., and C.-C. Wu, 2020: The role of WISHE in the rapid intensification of tropical cyclones. J. Atmos. Sci., 77, 31393160, https://doi.org/10.1175/JAS-D-20-0006.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chih, C.-H., and C.-C. Wu, 2020: Exploratory analysis of upper ocean heat content and sea surface temperature underlying tropical cyclone rapid intensification in the western North Pacific. J. Climate, 33, 10311050, https://doi.org/10.1175/JCLI-D-19-0305.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., 2015: The relative roles of the ocean and atmosphere as revealed by buoy air–sea observations in hurricanes. Mon. Wea. Rev., 143, 904913, https://doi.org/10.1175/MWR-D-13-00380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J., and E. W. Uhlhorn, 2003: Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131, 17831796, https://doi.org/10.1175//2562.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • D’Asaro, E. A., and Coauthors, 2014: Impact of typhoons on the ocean in the Pacific: ITOP. Bull. Amer. Meteor. Soc., 95, 14051418, https://doi.org/10.1175/BAMS-D-12-00104.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvement to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531543, https://doi.org/10.1175/WAF862.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dougherty, E. M., J. Molinari, R. F. Rogers, J. A. Zhang, and J. P. Kossin, 2018: Hurricane Bonnie (1998): Maintaining intensity during high vertical wind shear and an eyewall replacement cycle. Mon. Wea. Rev., 146, 33833399, https://doi.org/10.1175/MWR-D-18-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 34313456, https://doi.org/10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, M. S., R. F. Rogers, and P. D. Reasor, 2020: The rapid intensification and eyewall replacement cycles of Hurricane Irma (2017). Mon. Wea. Rev., 148, 9811004, https://doi.org/10.1175/MWR-D-19-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 22492269, https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goni, G., and Coauthors, 2009: Application of satellite-derived ocean measurements to tropical cyclone intensity forecasting. Oceanography, 22 (3), 190197, https://doi.org/10.5670/oceanog.2009.78.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hawkins, J. D., and M. Helveston, 2008: Tropical cyclone multiple eyewall characteristics. 28th Conf. on Hurricanes and Tropical Meteorology, Orlando, FL, Amer. Meteor. Soc., P1.7, https://ams.confex.com/ams/26HURR/techprogram/paper_76084.htm.

    • Search Google Scholar
    • Export Citation
  • Holliday, C. R., and A. H. Thompson, 1979: Climatological characteristics of rapidly intensifying typhoons. Mon. Wea. Rev., 107, 10221034, https://doi.org/10.1175/1520-0493(1979)107<1022:CCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hu, C.-C., and C.-C. Wu, 2020: Ensemble sensitivity analysis of tropical cyclone intensification rate during the development stage. J. Atmos. Sci., 77, 33873405, https://doi.org/10.1175/JAS-D-19-0196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, H.-C., J. Boucharel, I.-I. Lin, F.-F. Jin, C.-C. Lien, and I.-F. Pun, 2017: Air-sea fluxes for Hurricane Patricia (2015): Comparison with Supertyphoon Haiyan (2013) and under different ENSO conditions. J. Geophys. Res. Oceans, 122, 60766089, https://doi.org/10.1002/2017JC012741.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, P., I.-I. Lin, C. Chou, and R.-H. Huang, 2015: Change in ocean subsurface environment to suppress tropical cyclone intensification under global warming. Nat. Commun., 6, 7188, https://doi.org/10.1038/ncomms8188.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, K., T. Kuroda, K. Saito, and A. Wada, 2015: Forecasting a large number of tropical cyclone intensities around Japan using a high-resolution atmosphere–ocean coupled model. Wea. Forecasting, 30, 793808, https://doi.org/10.1175/WAF-D-14-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ito, K., and Coauthors, 2018: Analysis and forecast using dropsonde data from the inner-core region of Tropical Cyclone Lan (2017) obtained during the first aircraft missions of T-PARCII. SOLA, 14, 105110, https://doi.org/10.2151/sola.2018-018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B., L. K. Shay, and E. W. Uhlhorn, 2015: Enthalpy and momentum fluxes during Hurricane Earl relative to underlying ocean features. Mon. Wea. Rev., 143, 111131, https://doi.org/10.1175/MWR-D-13-00277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kanada, S., S. Tsujino, H. Aiki, M. K. Yoshioka, Y. Miyazawa, K. Tsuboki, and I. Takayabu, 2017: Impacts of SST patterns on rapid intensification of Typhoon Megi (2010). J. Geophys. Res. Atmos., 122, 13 24513 262, https://doi.org/10.1002/2017JD027252.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J., M. DeMaria, and J. A. Knaff, 2010: A revised tropical cyclone rapid intensification index for the Atlantic and eastern North Pacific basins. Wea. Forecasting, 25, 220241, https://doi.org/10.1175/2009WAF2222280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, and M. DeMaria, 2005: An operational statistical typhoon intensity prediction scheme for the western North Pacific. Wea. Forecasting, 20, 688699, https://doi.org/10.1175/WAF863.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., M. DeMaria, C. R. Sampson, J. E. Peak, J. Cummings, and W. H. Schubert, 2013: Upper oceanic energy response to tropical cyclone passage. J. Climate, 26, 26312650, https://doi.org/10.1175/JCLI-D-12-00038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. J. Slocum, K. D. Musgrave, C. R. Sampson, and B. R. Strahl, 2016: Using routinely available information to estimate tropical cyclone wind structure. Mon. Wea. Rev., 144, 12331247, https://doi.org/10.1175/MWR-D-15-0267.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., C. R. Sampson, and K. D. Musgrave, 2018: An operational rapid intensification prediction aid for the western North Pacific. Wea. Forecasting, 33, 799811, https://doi.org/10.1175/WAF-D-18-0012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ko, D. S., S.-Y. Chao, C.-C. Wu, and I-I Lin, 2014: Impacts of typhoon Megi (2010) on the South China Sea. J. Geophys. Res. Oceans, 119, 44744489, https://doi.org/10.1002/2013JC009785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in hurricanes. Mon. Wea. Rev., 137, 876892, https://doi.org/10.1175/2008MWR2701.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. DeMaria, 2016: Reducing operational hurricane intensity forecast errors during eyewall replacement cycles. Wea. Forecasting, 31, 601608, https://doi.org/10.1175/WAF-D-15-0123.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., J. A. Knaff, H. I. Berger, D. C. Herndon, T. A. Cram, C. S. Velden, R. J. Murnane, and J. D. Hawkins, 2007: Estimating hurricane wind structure in the absence of aircraft reconnaissance. Wea. Forecasting, 22, 89101, https://doi.org/10.1175/WAF985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., C.-P. Chang, Y.-T. Yang, and H.-J. Jiang, 2009: Western North Pacific typhoons with concentric eyewalls. Mon. Wea. Rev., 137, 37583770, https://doi.org/10.1175/2009MWR2850.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, H.-C., S. Tsujino, C.-C. Wang, C.-C. Huang, and K. Tsuboki, 2019: Diagnosis of the dynamic efficiency of latent heat release and the rapid intensification of Supertyphoon Haiyan (2013). Mon. Wea. Rev., 147, 11271147, https://doi.org/10.1175/MWR-D-18-0149.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lagmay, A. M. F., and Coauthors, 2015: Devastating storm surges of Typhoon Haiyan. Int. J. Disaster Risk Reduct., 11, 112, https://doi.org/10.1016/j.ijdrr.2014.10.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lander, M., C. Guard, and S. J. Camargo, 2014: Tropical cyclones, Super-Typhoon Haiyan, [in “State of the Climate in 2013”]. Bull. Amer. Meteor. Soc., 95, S112S114, https://doi.org/10.1175/2014BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-C. Wu, K. Emanuel, I.-H. Lee, C.-R. Wu, and I.-F. Pun, 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 26352649, https://doi.org/10.1175/MWR3005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-C. Wu, I.-F. Pun, and D. S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons’ intensification. Mon. Wea. Rev., 136, 32883306, https://doi.org/10.1175/2008MWR2277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., C.-H. Chen, I.-F. Pun, W. T. Liu, and C.-C. Wu, 2009a: Warm ocean anomaly, air sea fluxes, and the rapid intensification of Tropical Cyclone Nargis (2008). Geophys. Res. Lett., 36, L03817, https://doi.org/10.1029/2008GL035815.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., I.-F. Pun, and C.-C. Wu, 2009b: Upper ocean thermal structure and the western North Pacific category-5 typhoons Part II: Dependence on translation speed. Mon. Wea. Rev., 137, 37443757, https://doi.org/10.1175/2009MWR2713.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., G. J. Goni, J. Knaff, C. Forbes, and M. M. Ali, 2013a: Ocean heat content for tropical cyclone intensity forecasting and its impact on storm surge. Nat. Hazards, 66, 14811500, https://doi.org/10.1007/s11069-012-0214-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., and Coauthors, 2013b: An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett., 40, 18781882, https://doi.org/10.1002/grl.50091.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., I.-F. Pun, and C.-C. Lien, 2014: “Category-6” Supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophys. Res. Lett., 41, 85478553, https://doi.org/10.1002/2014GL061281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. D., and Coauthors, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305323, https://doi.org/10.1175/1520-0477(1998)079<0285:QPFROT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, J., M. M. Bell, J. L. Vigh, and R. F. Rogers, 2017: Examining tropical cyclone structure and intensification with the FLIGHT+ dataset from 1999 to 2012. Mon. Wea. Rev., 145, 44014421, https://doi.org/10.1175/MWR-D-17-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, W., C.-C. Lien, I-I Lin, and S.-P. Xie, 2015: Tropical cyclone-induced ocean response: A comparative study of the South China Sea and tropical Northwest Pacific. J. Climate, 28, 59525968.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Miyamoto, Y., and T. Takemi, 2015: A triggering mechanism for rapid intensification of tropical cyclones. J. Atmos. Sci., 72, 26662681, https://doi.org/10.1175/JAS-D-14-0193.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J., J. A. Zhang, R. F. Rogers, and D. Vollaro, 2019: Repeated eyewall replacement cycles in Hurricane Frances (2004). Mon. Wea. Rev., 147, 20092022, https://doi.org/10.1175/MWR-D-18-0345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mori, N., M. Kato, S. Kim, H. Mase, Y. Shibutani, T. Takemi, K. Tsuboki, and T. Yasuda, 2014: Local amplification of storm surge by Super Typhoon Haiyan in Leyte Gulf. Geophys. Res. Lett., 41, 51065113, https://doi.org/10.1002/2014GL060689.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805821, https://doi.org/10.1175/2008MWR2657.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peng, C.-H., and C.-C. Wu, 2020: The impact of outer-core surface heat fluxes on the convective activities and rapid intensification of tropical cyclones. J. Atmos. Sci., 77, 39073927, https://doi.org/10.1175/JAS-D-19-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, https://doi.org/10.1038/nature01481.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., R. A. Weller, and R. Pinkel, 1986: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 84118427, https://doi.org/10.1029/JC091iC07p08411.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Price, J. F., T. B. Sanford, and G. Z. Forristall, 1994: Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233260, https://doi.org/10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pun, I.-F., I-I Lin, C.-R. Wu, D.-S. Ko, and W.-T. Liu, 2007: Validation and application of altimetry-derived upper ocean thermal structure in the Western North Pacific Ocean for typhoon intensity forecast. IEEE Trans. Geosci. Remote Sens., 45, 16161630, https://doi.org/10.1109/TGRS.2007.895950.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pun, I.-F., Y.-T. Chang, I-I Lin, T.-Y. Tang, and R.-C. Lien, 2011: Typhoon-ocean interaction in the Western North Pacific: Part 2. Oceanogr., 24, 3241, https://doi.org/10.5670/oceanog.2011.92.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pun, I.-F., I-I Lin, and M.-H. Lo, 2013: Recent increase in high tropical cyclone heat potential area in the Western North Pacific Ocean. Geophy. Res. Lett., 40, 4680-4684, https://doi.org/10.1002/grl.50548.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pun, I.-F., I-I Lin, and D. S. Ko, 2014: New generation of satellite-derived ocean thermal structure for the western North Pacific typhoon intensity forecasting. Prog. Oceanogr., 121, 109124, https://doi.org/10.1016/j.pocean.2013.10.004.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pun, I.-F., I-I Lin, C.-C. Lien, and C.-C. Wu, 2018: Influence of the size of Supertyphoon Megi (2010) on SST cooling. Mon. Wea. Rev., 146, 661677, https://doi.org/10.1175/MWR-D-17-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pun, I.-F., and Coauthors, 2019: Rapid intensification of Typhoon Hato (2017) over shallow water. Sustainability, 11, 3709, https://doi.org/10.3390/su11133709.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 4470, https://doi.org/10.1175/2009JAS3122.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., and Coauthors, 2006: The Intensity Forecasting Experiment: A NOAA multiyear field program for improving tropical cyclone intensity forecast. Bull. Amer. Meteor. Soc., 87, 15231538, https://doi.org/10.1175/BAMS-87-11-1523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. Reasor, and S. Lorsolo, 2013: Airborne doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., P. Reasor, and J. A. Zhang, 2015: Multiscale structure and evolution of Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536562, https://doi.org/10.1175/MWR-D-14-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., J. A. Zhang, J. Zawislak, H. Jiang, G. R. Alvey III, E. J. Zipser, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 33553376, https://doi.org/10.1175/MWR-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R., and Coauthors, 2017: Rewriting the tropical record books: The extraordinary intensification of Hurricane Patricia. Bull. Amer. Meteor. Soc., 98, 20912112, https://doi.org/10.1175/BAMS-D-16-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., D. S. Nolan, J. P. Kossin, F. Zhang, and J. Fang, 2012: The roles of an expanding wind field and inertial stability in tropical cyclone secondary eyewall formation. J. Atmos. Sci., 69, 26212643, https://doi.org/10.1175/JAS-D-11-0326.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sampson, C. R., E. M. Fukada, J. A. Knaff, B. R. Strahl, M. J. Brennan, and T. Marchok, 2017: Tropical cyclone gale wind radii estimates for the western North Pacific. Wea. Forecasting, 32, 10291040, https://doi.org/10.1175/WAF-D-16-0196.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., and J. K. Brewster, 2010: Oceanic heat content variability in the eastern Pacific Ocean for hurricane intensity forecasting. Mon. Wea. Rev., 138, 21102131, https://doi.org/10.1175/2010MWR3189.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shay, L. K., G. J. Goni, and P. G. Black, 2000: Role of a warm ocean feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shen, L.-Z., C.-C. Wu, and F. Judt, 2021: The role of surface heat fluxes on the size of Typhoon Megi (2016). J. Atmos. Sci., 78, 10751093, https://doi.org/10.1175/JAS-D-20-0141.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sitkowski, M., J. P. Kossin, and C. M. Rozoff, 2011: Intensity and structure changes during hurricane eyewall replacement cycles. Mon. Wea. Rev., 139, 38293847, https://doi.org/10.1175/MWR-D-11-00034.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K., and M. T. Montgomery, 2016: The efficiency of diabatic heating and tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 142, 20812086, https://doi.org/10.1002/qj.2804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsuboki, K., M. K. Yoshioka, T. Shinoda, M. Kato, S. Kanada, and A. Kitoh, 2015: Future increase of supertyphoon intensity associated with climate change. Geophys. Res. Lett., 42, 646652, https://doi.org/10.1002/2014GL061793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tsujino, S., and H.-C. Kuo, 2020: Potential vorticity mixing and rapid intensification in numerically simulated Supertyphoon Haiyan (2013). J. Atmos. Sci., 77, 20672090, https://doi.org/10.1175/JAS-D-19-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 33353350, https://doi.org/10.1175/2009JAS3092.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wada, A., S. Kanada, and H. Yamada, 2018: Effect of air-sea environmental conditions and interfacial processes on extremely intense Typhoon Haiyan (2013). J. Geophys. Res. Atmos., 123, 10 37910 405, https://doi.org/10.1029/2017JD028139.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Walker, N. D., R. R. Leben, C. T. Pilley, M. Shannon, D. C. Herndon, I.-F. Pun, I-I Lin, and C. L. Gentemann, 2014: Slow translation speed causes rapid collapse of northeast Pacific Hurricane Kenneth over cold core eddy. Geophy. Res. Lett., 41, 75957601, https://doi.org/10.1002/2014GL061584.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 12501273, https://doi.org/10.1175/2008JAS2737.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wimmers, A. J., and C. S. Velden, 2016: Advancements in objective multisatellite tropical cyclone center fixing. J. Appl. Meteor. Climatol., 55, 197212, https://doi.org/10.1175/JAMC-D-15-0098.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wimmers, A. J., S. Griffin, J. Gerth, S. Bachmeier, and S. Lindstrom, 2018: Observations of gravity waves with high-pass filtering in the new generation of geostationary imagers and their relation to aircraft turbulence. Wea. Forecasting, 33, 139144, https://doi.org/10.1175/WAF-D-17-0080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and Coauthors, 2005: Dropwindsonde observations for typhoon surveillance near the Taiwan region (DOTSTAR): an overview. Bull. Amer. Meteor. Soc., 86, 787790, https://doi.org/ 10.1175/BAMS-86-6-787.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., C.-Y. Lee, and I.-I. Lin, 2007: The effect of the ocean eddy on tropical cyclone intensity. J. Atmos. Sci., 64, 35623578, https://doi.org/10.1175/JAS4051.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., W.-T. Tu, I.-F. Pun, I.-I. Lin, and M.-S. Peng, 2016: Tropical cyclone-ocean interaction in Typhoon Megi (2010)—A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations. J. Geophys. Res. Atmos., 121, 153167, https://doi.org/10.1002/2015JD024198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xu, J., and Y. Wang, 2018: Dependence of tropical cyclone intensification rate on sea surface temperature, storm intensity, and size in the western North Pacific. Wea. Forecasting, 33, 523537, https://doi.org/10.1175/WAF-D-17-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., P. G. Black, J. R. French, and W. M. Drennan, 2008: First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophys. Res. Lett., 35, L14813, https://doi.org/10.1029/2008GL034374.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, P. D. Reasor, E. W. Uhlhorn, and F. D. Marks, 2013: Asymmetric hurricane boundary layer structure from dropsonde composites in relation to the environmental vertical wind shear. Mon. Wea. Rev., 141, 39683984, https://doi.org/10.1175/MWR-D-12-00335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., J. J. Cione, E. A. Kalina, E. W. Uhlhorn, T. Hock, and J. A. Smith, 2017: Observations of infrared sea surface temperature and air–sea interaction in Hurricane Edouard (2014) using GPS dropsondes. J. Atmos. Oceanic Technol., 34, 13331349, https://doi.org/10.1175/JTECH-D-16-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., J. P. Dunion, and D. S. Nolan, 2020: In situ observations of the diurnal variation in the boundary layer of mature hurricanes. Geophys. Res. Lett., 47, 2019GL086206, https://doi.org/10.1029/2019GL086206.

    • Search Google Scholar
    • Export Citation
  • Zheng, Z.-W., I-I Lin, B. Wang, H.-C. Huang, and C.-H. Chen, 2015: A Long Neglected Damper in the El Niño—Typhoon Relationship: a ‘Gaia-Like’ Process. Sci. Rep., 5, 11103, https://doi.org/10.1038/srep11103.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 29 29 0
Full Text Views 1080 1080 226
PDF Downloads 799 799 176

A Tale of Two Rapidly Intensifying Supertyphoons: Hagibis (2019) and Haiyan (2013)

View More View Less
  • 1 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
  • | 2 NOAA/AOML/Hurricane Research Division, Miami, Florida
  • | 3 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
  • | 4 Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin
  • | 5 Department Of Earth System Science, University of California, Irvine, Irvine, California
  • | 6 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
  • | 7 NOAA/AOML/Hurricane Research Division, and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida
  • | 8 Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa, and Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
  • | 9 Institute of Hydrological and Ocean Sciences, National Central University, Taoyuan, Taiwan
  • | 10 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Devastating Japan in October 2019, Supertyphoon (STY) Hagibis was an important typhoon in the history of the Pacific. A striking feature of Hagibis was its explosive rapid intensification (RI). In 24 h, Hagibis intensified by 100 knots (kt; 1 kt ≈ 0.51 m s−1), making it one of the fastest-intensifying typhoons ever observed. After RI, Hagibis’s intensification stalled. Using the current typhoon intensity record holder, i.e., STY Haiyan (2013), as a benchmark, this work explores the intensity evolution differences of these two high-impact STYs. We found that the extremely high prestorm sea surface temperature reaching 30.5°C, deep/warm prestorm ocean heat content reaching 160 kJ cm−2, fast forward storm motion of ∼8 m s−1, small during-storm ocean cooling effect of ∼0.5°C, significant thunderstorm activity at its center, and rapid eyewall contraction were all important contributors to Hagibis’s impressive intensification. There was 36% more air–sea flux for Hagibis’s RI than for Haiyan’s. After its spectacular RI, Hagibis’s intensification stopped, despite favorable environments. Haiyan, by contrast, continued to intensify, reaching its record-breaking intensity of 170 kt. A key finding here is the multiple pathways that storm size affected the intensity evolution for both typhoons. After RI, Hagibis experienced a major size expansion, becoming the largest typhoon on record in the Pacific. This size enlargement, combined with a reduction in storm translational speed, induced stronger ocean cooling that reduced ocean flux and hindered intensification. The large storm size also contributed to slower eyewall replacement cycles (ERCs), which prolonged the negative impact of the ERC on intensification.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. I-I Lin, iilin@as.ntu.edu.tw; Dr. Robert Rogers, robert.rogers@noaa.gov

Abstract

Devastating Japan in October 2019, Supertyphoon (STY) Hagibis was an important typhoon in the history of the Pacific. A striking feature of Hagibis was its explosive rapid intensification (RI). In 24 h, Hagibis intensified by 100 knots (kt; 1 kt ≈ 0.51 m s−1), making it one of the fastest-intensifying typhoons ever observed. After RI, Hagibis’s intensification stalled. Using the current typhoon intensity record holder, i.e., STY Haiyan (2013), as a benchmark, this work explores the intensity evolution differences of these two high-impact STYs. We found that the extremely high prestorm sea surface temperature reaching 30.5°C, deep/warm prestorm ocean heat content reaching 160 kJ cm−2, fast forward storm motion of ∼8 m s−1, small during-storm ocean cooling effect of ∼0.5°C, significant thunderstorm activity at its center, and rapid eyewall contraction were all important contributors to Hagibis’s impressive intensification. There was 36% more air–sea flux for Hagibis’s RI than for Haiyan’s. After its spectacular RI, Hagibis’s intensification stopped, despite favorable environments. Haiyan, by contrast, continued to intensify, reaching its record-breaking intensity of 170 kt. A key finding here is the multiple pathways that storm size affected the intensity evolution for both typhoons. After RI, Hagibis experienced a major size expansion, becoming the largest typhoon on record in the Pacific. This size enlargement, combined with a reduction in storm translational speed, induced stronger ocean cooling that reduced ocean flux and hindered intensification. The large storm size also contributed to slower eyewall replacement cycles (ERCs), which prolonged the negative impact of the ERC on intensification.

© 2021 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Dr. I-I Lin, iilin@as.ntu.edu.tw; Dr. Robert Rogers, robert.rogers@noaa.gov

Supplementary Materials

    • Supplemental Materials (PDF 12.0 MB)
Save