• Ackerman, A. S. , M. P. Kirkpatrick , D. E. Stevens , and O. B. Toon , 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, 10141017, https://doi.org/10.1038/nature03174.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A. , 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, https://doi.org/10.1126/science.245.4923.1227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A. , M. Fang , and V. Ghate , 2016: Exploring stratocumulus cloud-top entrainment processes and parameterizations by using Doppler cloud radar observations. J. Atmos. Sci., 73, 729742, https://doi.org/10.1175/JAS-D-15-0147.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baker, M. B. , R. G. Corbin , and J. Latham , 1980: The influence of entrainment on the evolution of cloud droplet spectra. 1. A model of inhomogeneous mixing. Quart. J. Roy. Meteor. Soc., 106, 581598, https://doi.org/10.1002/qj.49710644914.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bates, T. S. , and Coauthors, 1998: Processes controlling the distribution of aerosol particles in the lower marine boundary layer during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res., 103, 1636916383, https://doi.org/10.1029/97JD03720.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beals, M. J. , J. P. Fugal , R. A. Shaw , J. Lu , S. M. Spuler , and J. L. Stith , 2015: Holographic measurements of inhomogeneous cloud mixing at the centimeter scale. Science, 350, 8790, https://doi.org/10.1126/science.aab0751.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bellouin, N. , and Coauthors, 2020: Bounding global aerosol radiative forcing of climate change. Rev. Geophys., 58, e2019RG000660, https://doi.org/10.1029/2019RG000660.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A. , J. P. Mulcahy , T. Andrews , K. D. Williams , M. A. Ringer , P. R. Field , and G. S. Elsaesser , 2019: Strong dependence of atmospheric feedbacks on mixed-phase microphysics and aerosol-cloud interactions in HadGEM3. J. Adv. Model. Earth Syst., 11, 17351758, https://doi.org/10.1029/2019MS001688.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bony, S. , and J. L. Dufresne , 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S. , 2015: Insights into low-latitude cloud feedbacks from high-resolution models. Philos. Trans. Roy. Soc., 373A, 20140415, https://doi.org/10.1098/rsta.2014.0415.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Brüggemann, M. , N. Hayeck , and C. George , 2018: Interfacial photochemistry at the ocean surface is a global source of organic vapors and aerosols. Nat. Commun., 9, 2101, https://doi.org/10.1038/s41467-018-04528-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Burnet, F. , and J. L. Brenguier , 2007: Observational study of the entrainment-mixing process in warm convective clouds. J. Atmos. Sci., 64, 19952011, https://doi.org/10.1175/JAS3928.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cadeddu, M. P. , V. P. Ghate , and M. Mech , 2020: Ground-based observations of cloud and drizzle liquid water path in stratocumulus clouds. Atmos. Meas. Tech., 13, 14851499, https://doi.org/10.5194/amt-13-1485-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Carslaw, K. S. , and Coauthors, 2013: Large contribution of natural aerosols to uncertainty in indirect forcing. Nature, 503, 6771, https://doi.org/10.1038/nature12674.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Charlson, R. J. , J. E. Lovelock , M. O. Andreae , and S. G. Warren , 1987: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326, 655661, https://doi.org/10.1038/326655a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y. C. , L. Xue , Z. J. Lebo , H. Wang , R. M. Rasmussen , and J. H. Seinfeld , 2011: A comprehensive numerical study of aerosol-cloud-precipitation interactions in marine stratocumulus. Atmos. Chem. Phys., 11, 97499769, https://doi.org/10.5194/acp-11-9749-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, Y. C. , M. W. Christensen , L. Xue , A. Sorooshian , G. L. Stephens , R. M. Rasmussen , and J. H. Seinfeld , 2012: Occurrence of lower cloud albedo in ship tracks. Atmos. Chem. Phys., 12, 82238235, https://doi.org/10.5194/acp-12-8223-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiu, J. C. , and Coauthors, 2021: Observational constraints on warm cloud microphysical processes using machine learning and optimization techniques. Geophys. Res. Lett., 48, e2020GL091236, https://doi.org/10.1029/2020GL091236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christensen, M. W. , and G. L. Stephens , 2011: Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: Evidence of cloud deepening. J. Geophys. Res., 116, D03201, https://doi.org/10.1029/2010JD014638.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. D. , J. L. Varner , F. Eisele , R. L. Mauldin , D. Tanner , and M. Litchy , 1998: Particle production in the remote marine atmosphere: Cloud outflow and subsidence during ACE 1. J. Geophys. Res., 103, 1639716409, https://doi.org/10.1029/97JD02987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coakley, J. A. , and C. D. Walsh , 2002: Limits to the aerosol indirect radiative effect derived from observations of ship tracks. J. Atmos. Sci., 59, 668680, https://doi.org/10.1175/1520-0469(2002)059<0668:LTTAIR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crewell, S. , and U. Lohnert , 2003: Accuracy of cloud liquid water path from ground-based microwave radiometry 2. Sensor accuracy and synergy. Radio Sci., 38, 8042, https://doi.org/10.1029/2002RS002634.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cropper, T. , E. Hanna , M. A. Valente , and T. Jonsson , 2015: A daily Azores-Iceland North Atlantic Oscillation index back to 1850. Geosci. Data J., 2, 1224, https://doi.org/10.1002/gdj3.23.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P. , and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G. , and H. Siebert , 2009: Cloud-aerosol interactions from the micro to the cloud scale. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. J. Charlson , Eds., MIT Press, 319338.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G. , S. M. Kreidenweis , B. Stevens , and W. R. Cotton , 1996: Numerical simulations of stratocumulus processing of cloud condensation nuclei through collision-coalescence. J. Geophys. Res., 101, 2139121402, https://doi.org/10.1029/96JD01552.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Feingold, G. , W. L. Eberhard , D. E. Veron , and M. Previdi , 2003: First measurements of the Twomey indirect effect using ground-based remote sensors. Geophys. Res. Lett., 30, 1287, https://doi.org/10.1029/2002GL016633.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fielding, M. D. , J. C. Chiu , R. J. Hogan , G. Feingold , E. Eloranta , E. J. O’Connor , and M. P. Cadeddu , 2015: Joint retrievals of cloud and drizzle in marine boundary layer clouds using ground-based radar, lidar and zenith radiances. Atmos. Meas. Tech., 8, 18331889, https://doi.org/10.5194/amt-8-2663-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fierz, M. , M. G. C. Vernooij , and H. Burtscher , 2007: An improved low-flow thermodenuder. J. Aerosol Sci., 38, 11631168, https://doi.org/10.1016/j.jaerosci.2007.08.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Frossard, A. A. , L. M. Russell , S. M. Burrows , S. M. Elliott , T. S. Bates , and P. K. Quinn , 2014: Sources and composition of submicron organic mass in marine aerosol particles. J. Geophys. Res. Atmos., 119, 1297713003, https://doi.org/10.1002/2014JD021913.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fugal, J. P. , and R. A. Shaw , 2009: Cloud particle size distributions measured with an airborne digital in-line holographic instrument. Atmos. Meas. Tech., 2, 259271, https://doi.org/10.5194/amt-2-259-2009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gao, S. N. , C. S. Lu , Y. G. Liu , F. Mei , J. Wang , L. Zhu , and S. Q. Yan , 2020: Contrasting scale dependence of entrainment-mixing mechanisms in stratocumulus clouds. Geophys. Res. Lett., 47, e2020GL086970, https://doi.org/10.1029/2020GL086970.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H. , 1996: Microphysics of marine stratocumulus clouds with two drizzle modes. J. Atmos. Sci., 53, 16491662, https://doi.org/10.1175/1520-0469(1996)053<1649:MOMSCW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gerber, H. , G. Frick , S. P. Malinowski , J. L. Brenguier , and F. Burnet , 2005: Holes and entrainment in stratocumulus. J. Atmos. Sci., 62, 443459, https://doi.org/10.1175/JAS-3399.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gettelman, A. , H. Morrison , C. R. Terai , and R. Wood , 2013: Microphysical process rates and global aerosol-cloud interactions. Atmos. Chem. Phys., 13, 98559867, https://doi.org/10.5194/acp-13-9855-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E. , D. Wang , M. J. Bartholomew , M. P. Jensen , D. B. Mechem , J. C. Hardin , and R. Wood , 2019: Midlatitude oceanic cloud and precipitation properties as sampled by the ARM eastern North Atlantic observatory. J. Geophys. Res. Atmos., 124, 47414760, https://doi.org/10.1029/2018JD029667.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoffmann, F. , and G. Feingold , 2019: Entrainment and mixing in stratocumulus: Effects of a new explicit subgrid-scale scheme for large-eddy simulations with particle-based microphysics. J. Atmos. Sci., 76, 19551973, https://doi.org/10.1175/JAS-D-18-0318.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hudson, J. G. , and S. S. Yum , 2001: Maritime-continental drizzle contrasts in small cumuli. J. Atmos. Sci., 58, 915926, https://doi.org/10.1175/1520-0469(2001)058<0915:MCDCIS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Search Google Scholar
    • Export Citation
  • Joshil, S. S. , C. M. Nguyen , V. Chandrasekar , J. C. Chiu , and Y. Blanchard , 2020: Separating cloud and drizzle signals in radar Doppler spectra using a parametric time domain method. J. Atmos. Oceanic Technol., 37, 16691680, https://doi.org/10.1175/JTECH-D-20-0061.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P. , E. E. Clothiaux , M. A. Miller , E. P. Luke , K. L. Johnson , K. P. Moran , K. B. Widener , and B. A. Albrecht . 2007. The Atmospheric Radiation Measurement Program cloud profiling radars: Second-generation sampling strategies, processing, and cloud data products. J. Atmos. Oceanic Technol., 24, 11991214, https://doi.org/10.1175/jtech2033.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kollias, P. , and Coauthors, 2016: Development and applications of ARM millimeter-wavelength cloud radars. The Atmospheric Radiation Measurement (ARM) Program: The First 20 Years, Meteor. Monogr., No. 57, Amer. Meteor. Soc., https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0037.1.

    • Search Google Scholar
    • Export Citation
  • Kooperman, G. J. , M. S. Pritchard , and R. C. J. Somerville , 2013: Robustness and sensitivities of central US summer convection in the super-parameterized CAM: Multi-model intercomparison with a new regional EOF index. Geophys. Res. Lett., 40, 32873291, https://doi.org/10.1002/grl.50597.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kulkarni, P. , and J. Wang , 2006: New fast integrated mobility spectrometer for real-time measurement of aerosol size distribution—I: Concept and theory. J. Aerosol Sci., 37, 13031325, https://doi.org/10.1016/j.jaerosci.2006.01.005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, B. , P. Gotzfried , N. Suresh , J. Schumacher , and R. A. Shaw , 2018: Scale dependence of cloud microphysical response to turbulent entrainment and mixing. J. Adv. Model. Earth Syst., 10, 27772785, https://doi.org/10.1029/2018MS001487.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamer, K. , A. Tatarevic , I. Jo , and P. Kollias , 2014: Evaluation of gridded scanning ARM cloud radar reflectivity observations and vertical Doppler velocity retrievals. Atmos. Meas. Tech., 7, 10891103, https://doi.org/10.5194/amt-7-1089-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lamer, K. , B. P. Treserras , Z. Zhu , B. Isom , N. Bharadwaj , and P. Kollias , 2019: Characterization of shallow oceanic precipitation using profiling and scanning radar observations at the eastern North Atlantic ARM observatory. Atmos. Meas. Tech., 12, 49314947, https://doi.org/10.5194/amt-12-4931-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Laskin, A. , R. C. Moffet , and M. K. Gilles , 2019: Chemical imaging of atmospheric particles. Acc. Chem. Res., 52, 34193431, https://doi.org/10.1021/acs.accounts.9b00396.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S. , W. Berg , J. Haynes , M. Lebsock , and T. Takemura , 2009: Global observations of aerosol impacts on precipitation occurrence in warm maritime clouds. J. Geophys. Res., 114, D09211, https://doi.org/10.1029/2008JD011273.

    • Search Google Scholar
    • Export Citation
  • Lehmann, K. , H. Siebert , and R. A. Shaw , 2009: Homogeneous and inhomogeneous mixing in cumulus clouds: Dependence on local turbulence structure. J. Atmos. Sci., 66, 36413659, https://doi.org/10.1175/2009JAS3012.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lohmann, U. , and J. Feichter , 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5, 715737, https://doi.org/10.5194/acp-5-715-2005.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lolli, S. , E. J. Welton , and J. R. Campbell , 2013: Evaluating light rain drop size estimates from multiwavelength micropulse lidar network profiling. J. Atmos. Oceanic Technol., 30, 27982807, https://doi.org/10.1175/JTECH-D-13-00062.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, C. S. , Y. G. Liu , and S. J. Niu , 2011: Examination of turbulent entrainment-mixing mechanisms using a combined approach. J. Geophys. Res., 116, D20207, https://doi.org/10.1029/2011JD015944.

    • Search Google Scholar
    • Export Citation
  • Lu, C. S. , S. J. Niu , Y. G. Liu , and A. M. Vogelmann , 2013a: Empirical relationship between entrainment rate and microphysics in cumulus clouds. Geophys. Res. Lett., 40, 23332338, https://doi.org/10.1002/grl.50445.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, C. S. , Y. G. Liu , S. J. Niu , S. Krueger , and T. Wagner , 2013b: Exploring parameterization for turbulent entrainment-mixing processes in clouds. J. Geophys. Res. Atmos., 118, 185194, https://doi.org/10.1029/2012JD018464.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, C. S. , Y. G. Liu , S. J. Niu , and S. S. Endo , 2014: Scale dependence of entrainment-mixing mechanisms in cumulus clouds. J. Geophys. Res. Atmos., 119, 1387713890, https://doi.org/10.1002/2014JD022265.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luke, E. P. , and P. Kollias , 2013: Separating cloud and drizzle radar moments during precipitation onset using Doppler spectra. J. Atmos. Oceanic Technol., 30, 16561671, https://doi.org/10.1175/JTECH-D-11-00195.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mann, J. A. L. , J. C. Chiu , R. J. Hogan , E. J. O’Connor , T. S. L’Ecuyer , T. H. M. Stein , and A. Jefferson , 2014: Aerosol impacts on drizzle properties in warm clouds from ARM Mobile Facility maritime and continental deployments. J. Geophys. Res. Atmos., 119, 41364148, https://doi.org/10.1002/2013JD021339.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mather, J. H. , and J. W. Voyles , 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, https://doi.org/10.1175/BAMS-D-11-00218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mayer, K. J. , and Coauthors, 2020: Secondary marine aerosol plays a dominant role over primary sea spray aerosol in cloud formation. ACS Cent. Sci., 6, 22592266, https://doi.org/10.1021/acscentsci.0c00793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechem, D. B. , S. E. Yuter , and S. P. de Szoeke , 2012: Thermodynamic and aerosol controls in southeast Pacific stratocumulus. J. Atmos. Sci., 69, 12501266, https://doi.org/10.1175/JAS-D-11-0165.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mechem, D. B. , C. S. Wittman , M. A. Miller , S. E. Yuter , and S. P. De Szoeke , 2018: Joint synoptic and cloud variability over the northeast Atlantic near the Azores. J. Appl. Meteor. Climatol., 57, 12731290, https://doi.org/10.1175/JAMC-D-17-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, F. , A. Setyan , Q. Zhang , and J. Wang , 2013a: CCN activity of organic aerosols observed downwind of urban emissions during CARES. Atmos. Chem. Phys., 13, 1215512169, https://doi.org/10.5194/acp-13-12155-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mei, F. , and Coauthors, 2013b: Droplet activation properties of organic aerosols observed at an urban site during CalNex-LA. J. Geophys. Res. Atmos., 118, 29032917, https://doi.org/10.1002/jgrd.50285.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mungall, E. L. , and Coauthors, 2017: Microlayer source of oxygenated volatile organic compounds in the summertime marine Arctic boundary layer. Proc. Natl. Acad. Sci. USA, 114, 62036208, https://doi.org/10.1073/pnas.1620571114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, C. , and V. Chandrasekar , 2014: An improved method for detecting and separating cloud from drizzle radar signatures using a time domain parametric technique. AGU Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract A41K-3216, https://agu.confex.com/agu/fm14/meetingapp.cgi/Paper/19153.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S. , and J. Leighton , 1986: An observation study of the structure of stratiform cloud sheets: Part I. Structure. Quart. J. Roy. Meteor. Soc., 112, 431460, https://doi.org/10.1002/qj.49711247209.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Connor, E. J. , R. J. Hogan , and A. J. Illingworth , 2005: Retrieving stratocumulus drizzle parameters using Doppler radar and lidar. J. Appl. Meteor., 44, 1427, https://doi.org/10.1175/JAM-2181.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • O’Dowd, C. D. , and Coauthors, 2004: Biogenically driven organic contribution to marine aerosol. Nature, 431, 676680, https://doi.org/10.1038/nature02959.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ovadnevaite, J. , and Coauthors, 2014: Submicron NE Atlantic marine aerosol chemical composition and abundance: Seasonal trends and air mass categorization. J. Geophys. Res. Atmos., 119, 1185011863, https://doi.org/10.1002/2013JD021330.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Painemal, D. , and P. Zuidema , 2013: The first aerosol indirect effect quantified through airborne remote sensing during VOCALS-REx. Atmos. Chem. Phys., 13, 917931, https://doi.org/10.5194/acp-13-917-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, M. D. , and S. M. Kreidenweis , 2007: A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7, 19611971, https://doi.org/10.5194/acp-7-1961-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petters, M. D. , J. R. Snider , B. Stevens , G. Vali , I. Faloona , and L. M. Russell , 2006: Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical Pacific marine boundary layer. J. Geophys. Res., 111, D02206, https://doi.org/10.1029/2004JD005694.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M. , and A. Khain , 2018: Theoretical analysis of the entrainment-mixing process at cloud boundaries. Part I: Droplet size distributions and humidity within the interface zone. J. Atmos. Sci., 75, 20492064, https://doi.org/10.1175/JAS-D-17-0308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prather, K. A. , and Coauthors, 2013: Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl. Acad. Sci. USA, 110, 75507555, https://doi.org/10.1073/pnas.1300262110.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinn, P. K. , and T. S. Bates , 2011: The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature, 480, 5156, https://doi.org/10.1038/nature10580.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Quinn, P. K. , D. B. Collins , V. H. Grassian , K. A. Prather , and T. S. Bates , 2015: Chemistry and related properties of freshly emitted sea spray aerosol. Chem. Rev., 115, 43834399, https://doi.org/10.1021/cr500713g.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Raes, F. , 1995: Entrainment of free tropospheric aerosols as regulating mechanism form cloud condensation nuclei in the remote marine boundary layer. J. Geophys. Res., 100, 28932903, https://doi.org/10.1029/94JD02832.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remillard, J. , and G. Tselioudis , 2015: Cloud regime variability over the Azores and its application to climate model evaluation. J. Climate, 28, 97079720, https://doi.org/10.1175/JCLI-D-15-0066.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D. , S. Sherwood , R. Wood , and L. Donner , 2014a: Climate effects of aerosol-cloud interactions. Science, 343, 379380, https://doi.org/10.1126/science.1247490.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D. , and Coauthors, 2014b: Global observations of aerosol-cloud-precipitation- climate interactions. Rev. Geophys., 52, 750808, https://doi.org/10.1002/2013RG000441.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rusli, S. P. , D. P. Donovan , and H. W. J. Russchenberg , 2017: Simultaneous and synergistic profiling of cloud and drizzle properties using ground-based observations. Atmos. Meas. Tech., 10, 47774803, https://doi.org/10.5194/amt-10-4777-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Russell, L. M. , and Coauthors, 1998: Bidirectional mixing in an ACE 1 marine boundary layer overlain by a second turbulent layer. J. Geophys. Res., 103, 1641116432, https://doi.org/10.1029/97JD03437.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schmid, B. , and Coauthors, 2014: The DOE ARM Aerial Facility. Bull. Amer. Meteor. Soc., 95, 723742, https://doi.org/10.1175/BAMS-D-13-00040.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siebert, H. , and Coauthors, 2020: Observations of aerosol, cloud, turbulence, and radiation properties at the top of the marine boundary layer over the eastern North Atlantic Ocean: The ACORES campaign. Bull. Amer. Meteor. Soc., 102, E123E147, https://doi.org/10.1175/BAMS-D-19-0191.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorooshian, A. , G. Feingold , M. D. Lebsock , H. L. Jiang , and G. L. Stephens , 2010: Deconstructing the precipitation susceptibility construct: Improving methodology for aerosol-cloud precipitation studies. J. Geophys. Res., 115, D17201, https://doi.org/10.1029/2009JD013426.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stephens, G. L. , and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, https://doi.org/10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Stevens, B. , and G. Feingold , 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607613, https://doi.org/10.1038/nature08281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terai, C. R. , R. Wood , D. C. Leon , and P. Zuidema , 2012: Does precipitation susceptibility vary with increasing cloud thickness in marine stratocumulus? Atmos. Chem. Phys., 12, 45674583, https://doi.org/10.5194/acp-12-4567-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Terai, C. R. , R. Wood , and T. L. Kubar , 2015: Satellite estimates of precipitation susceptibility in low-level marine stratiform clouds. J. Geophys. Res. Atmos., 120, 88788889, https://doi.org/10.1002/2015JD023319.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Thalman, R. , and Coauthors, 2017: CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central Amazonia: Seasonal and diel variations and impact of anthropogenic emissions. Atmos. Chem. Phys., 17, 1177911801, https://doi.org/10.5194/acp-17-11779-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Twomey, S. , 1977: Influence of pollution on shortwave albedo of clouds. J. Atmos. Sci., 34, 11491152, https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J. , and Coauthors, 2009: Observations of marine stratocumulus microphysics and implications for processes controlling droplet spectra: Results from the Marine Stratus/Stratocumulus Experiment. J. Geophys. Res., 114, D18210, https://doi.org/10.1029/2008JD011035.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J. , X. Dong , and R. Wood , 2016a: Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) science plan. ARM Rep. DOE/SC-ARM-16-006, 49 pp., www.arm.gov/publications/programdocs/doe-sc-arm-16-006.pdf.

    • Search Google Scholar
    • Export Citation
  • Wang, J. , and Coauthors, 2016b: Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall. Nature, 539, 416419, https://doi.org/10.1038/nature19819.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J. , M. Pikridas , S. R. Spielman , and T. Pinterich , 2017: A fast integrated mobility spectrometer for rapid measurement of sub-micrometer aerosol size distribution, part I: Design and model evaluation. J. Aerosol Sci., 108, 4455, https://doi.org/10.1016/j.jaerosci.2017.02.012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, J. , and Coauthors, 2019: Cloud droplet activation of secondary organic aerosol is mainly controlled by molecular weight, not water solubility. Atmos. Chem. Phys., 19, 941954, https://doi.org/10.5194/acp-19-941-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Q. , and B. A. Albrecht , 1994: Observations of cloud-top entrainment in marine stratocumulus clouds. J. Atmos. Sci., 51, 15301547, https://doi.org/10.1175/1520-0469(1994)051<1530:OOCTEI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y. , T. Pinterich , and J. Wang , 2018: Rapid measurement of sub-micrometer aerosol size distribution using a fast integrated mobility spectrometer. J. Aerosol Sci., 121, 1220, https://doi.org/10.1016/j.jaerosci.2018.03.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, Y. , and Coauthors, 2021: Vertical profiles of trace gas and aerosol properties over the eastern North Atlantic: Variations with season and synoptic condition. Atmos. Chem. Phys., 21, 1107911098, https://doi.org/10.5194/acp-21-11079-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. , 1973: Microstructure of cumulus cloud. 4. Effect on droplet spectrum of mixing between cloud and environment. J. Atmos. Sci., 30, 256261, https://doi.org/10.1175/1520-0469(1973)030<0256:TMOCCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D. , R. J. Hogan , E. J. O’Connor , and A. J. Illingworth , 2010: Estimating drizzle drop size and precipitation rate using two-colour lidar measurements. Atmos. Meas. Tech., 3, 671681, https://doi.org/10.5194/amt-3-671-2010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willis, M. D. , and Coauthors, 2017: Evidence for marine biogenic influence on summertime Arctic aerosol. Geophys. Res. Lett., 44, 64606470, https://doi.org/10.1002/2017GL073359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R. , 2007: Cancellation of aerosol indirect effects in marine stratocumulus through cloud thinning. J. Atmos. Sci., 64, 26572669, https://doi.org/10.1175/JAS3942.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R. , 2012: Stratocumulus clouds. Mon. Wea. Rev., 140, 23732423, https://doi.org/10.1175/MWR-D-11-00121.1.

  • Wood, R. , T. L. Kubar , and D. L. Hartmann , 2009: Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds: Part II. Heuristic models of rain formation. J. Atmos. Sci., 66, 29732990, https://doi.org/10.1175/2009JAS3072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R. , C. S. Bretherton , D. Leon , A. D. Clarke , P. Zuidema , G. Allen , and H. Coe , 2011: An aircraft case study of the spatial transition from closed to open mesoscale cellular convection over the southeast Pacific. Atmos. Chem. Phys., 11, 23412370, https://doi.org/10.5194/acp-11-2341-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wood, R. , D. Leon , M. Lebsock , J. Snider , and A. D. Clarke , 2012: Precipitation driving of droplet concentration variability in marine low clouds. J. Geophys. Res., 117, D19210, https://doi.org/10.1029/2012JD018305.

    • Search Google Scholar
    • Export Citation
  • Wood, R. , and Coauthors, 2015: Clouds, aerosol, and precipitation in the marine boundary layer: An ARM Mobile Facility deployment. Bull. Amer. Meteor. Soc., 96, 419439, https://doi.org/10.1175/BAMS-D-13-00180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P. , X. Q. Dong , and B. K. Xi , 2015: Marine boundary layer drizzle properties and their impact on cloud microphysical property retrievals. Atmos. Meas. Tech., 8, 35553562, https://doi.org/10.5194/amt-8-3555-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, P. , X. Q. Dong , B. K. Xi , J. J. Tian , and D. M. Ward , 2020: Profiles of MBL cloud and drizzle microphysical properties retrieved from ground-based observations and validated by aircraft in situ measurements over the Azores. J. Geophys. Res. Atmos., 125, e2019JD032205, https://doi.org/10.1029/2019JD032205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wyant, M. C. , and Coauthors, 2015: Global and regional modeling of clouds and aerosols in the marine boundary layer during VOCALS: The VOCA intercomparison. Atmos. Chem. Phys., 15, 153172, https://doi.org/10.5194/acp-15-153-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeom, J. M. , S. S. Yum , Y. A. Liu , and C. S. Lu , 2017: A study on the entrainment and mixing process in the continental stratocumulus clouds measured during the RACORO campaign. Atmos. Res., 194, 8999, https://doi.org/10.1016/j.atmosres.2017.04.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yeom, J. M. , and Coauthors, 2021: Vertical variations of cloud microphysical relationships in marine stratocumulus clouds observed during the ACE-ENA campaign. J. Geophys. Res. Atmos., 126, e2021JD034700, https://doi.org/10.1029/2021JD034700.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yum, S. S. , J. Wang , Y. G. Liu , G. I. Senum , S. R. Springston , R. L. McGraw , and J. M. Yeom , 2015: Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the VOCALS project. J. Geophys. Res. Atmos., 120, 50475069, https://doi.org/10.1002/2014JD022802.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zawadowicz, M. A. , and Coauthors, 2021: Aircraft measurements of aerosol and trace gas chemistry in the eastern North Atlantic. Atmos. Chem. Phys., 21, 79838002, https://doi.org/10.5194/acp-21-7983-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z. , and Coauthors, 2021: Vertical dependence of horizontal variation of cloud microphysics: Observations from the ACE-ENA field campaign and implications for warm rain simulation in climate models. Atmos. Chem. Phys., 21, 31033121, https://doi.org/10.5194/acp-21-3103-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, G. , and Coauthors, 2018: Marine boundary layer aerosol in the eastern North Atlantic: Seasonal variations and key controlling processes. Atmos. Chem. Phys., 18, 1761517635, https://doi.org/10.5194/acp-18-17615-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, G. , C. Kuang , J. Uin , T. Watson , and J. Wang , 2020a: Large contribution of organics to condensational growth and formation of cloud condensation nuclei (CCN) in remote marine boundary layer. Atmos. Chem. Phys., 20, 1251512525, https://doi.org/10.5194/acp-20-12515-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, G. , and Coauthors, 2020b: Long-range transported North American wildfire aerosols observed in marine boundary layer of eastern North Atlantic. Environ. Int., 139, 105680, https://doi.org/10.1016/j.envint.2020.105680.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zheng, G. , and Coauthors, 2021: New particle formation in the remote marine boundary layer. Nat. Commun., 12, 527, https://doi.org/10.1038/s41467-020-20773-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 20 19 0
Full Text Views 2319 1453 78
PDF Downloads 2007 1313 62

Aerosol and Cloud Experiments in the Eastern North Atlantic (ACE-ENA)

View More View Less
  • 1 Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri, and Environmental and Climate Science Department, Brookhaven National Laboratory, Upton, New York;
  • | 2 Department of Atmospheric Science, University of Washington, Seattle, Washington;
  • | 3 Environmental and Climate Science Department, Brookhaven National Laboratory, Upton, New York;
  • | 4 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado;
  • | 5 Environmental and Climate Science Department, Brookhaven National Laboratory, Upton, New York;
  • | 6 Environmental and Climate Science Department, Brookhaven National Laboratory, Upton, New York;
  • | 7 School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, New York;
  • | 8 School of Marine and Atmospheric Sciences, Stony Brook University, State University of New York, Stony Brook, and Environmental and Climate Science Department, Brookhaven National Laboratory, Upton, New York;
  • | 9 Department of Chemistry, and Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana;
  • | 10 Department of Atmospheric Sciences, Texas A&M University, College Station, Texas;
  • | 11 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China;
  • | 12 Department of Geography and Atmospheric Science, University of Kansas, Lawrence, Kansas;
  • | 13 Pacific Northwest National Laboratory, Richland, Washington;
  • | 14 Department of Atmospheric Sciences, University of North Dakota, Grand Forks, North Dakota;
  • | 15 Pacific Northwest National Laboratory, Richland, Washington;
  • | 16 Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, and Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, Missouri;
  • | 17 Department of Atmosphere Science, Yonsei University, Seoul, South Korea;
  • | 18 Center for Aerosol Science and Engineering, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, Missouri;
  • | 19 Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico;
  • | 20 Centre of Climate, Meteorology and Global Change (CMMG), University of Azores, Angra do Heroísmo, Portugal;
  • | 21 Le Centre pour l’Étude et la Simulation du Climat à l’Échelle Régionale, Department of Earth and Atmospheric Sciences, University of Quebec at Montreal, Montreal, Quebec, Canada;
  • | 22 Pacific Northwest National Laboratory, Richland, Washington;
  • | 23 Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona;
  • | 24 Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico;
  • | 25 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing, China;
  • | 26 Argonne National Laboratory, Argonne, Illinois;
  • | 27 Pacific Northwest National Laboratory, Richland, Washington;
  • | 28 Environmental and Climate Science Department, Brookhaven National Laboratory, Upton, New York;
  • | 29 Pacific Northwest National Laboratory, Richland, Washington;
  • | 30 Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey;
  • | 31 Sonoma Technology Inc., Petaluma, California;
  • | 32 Pacific Northwest National Laboratory, Richland, Washington;
  • | 33 Environmental and Climate Science Department, Brookhaven National Laboratory, Upton, New York;
  • | 34 Atmospheric Sciences Program, and Department of Physics, Michigan Technological University, Houghton, Michigan;
  • | 35 Pacific Northwest National Laboratory, Richland, Washington;
  • | 36 Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado;
  • | 37 Pacific Northwest National Laboratory, Richland, Washington;
  • | 38 School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia;
  • | 39 Department of Atmospheric Science, University of Washington, Seattle, Washington;
  • | 40 Department of Atmosphere Science, Yonsei University, Seoul, South Korea, and Atmospheric Sciences Program, and Department of Physics, Michigan Technological University, Houghton, Michigan;
  • | 41 Pacific Northwest National Laboratory, Richland, Washington;
  • | 42 Physics Department, University of Maryland, Baltimore County, Baltimore, Maryland
Restricted access

Abstract

With their extensive coverage, marine low clouds greatly impact global climate. Presently, marine low clouds are poorly represented in global climate models, and the response of marine low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary layer clouds, whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. In addition, the ENA is periodically impacted by continental aerosols, making it an excellent location to study the cloud condensation nuclei (CCN) budget in a remote marine region periodically perturbed by anthropogenic emissions, and to investigate the impacts of long-range transport of aerosols on remote marine clouds. The Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) campaign was motivated by the need of comprehensive in situ measurements for improving the understanding of marine boundary layer CCN budget, cloud and drizzle microphysics, and the impact of aerosol on marine low cloud and precipitation. The airborne deployments took place from 21 June to 20 July 2017 and from 15 January to 18 February 2018 in the Azores. The flights were designed to maximize the synergy between in situ airborne measurements and ongoing long-term observations at a ground site. Here we present measurements, observation strategy, meteorological conditions during the campaign, and preliminary findings. Finally, we discuss future analyses and modeling studies that improve the understanding and representation of marine boundary layer aerosols, clouds, precipitation, and the interactions among them.

CURRENT AFFILIATIONS: JUUL Labs, San Francisco, California;

CURRENT AFFILIATIONS: Ohio State University, Columbus, Ohio;

CURRENT AFFILIATIONS: Environmental and Climate Science Department, Brookhaven National Laboratory, Upton, New York

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Wang, jian@wustl.edu

Abstract

With their extensive coverage, marine low clouds greatly impact global climate. Presently, marine low clouds are poorly represented in global climate models, and the response of marine low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary layer clouds, whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. In addition, the ENA is periodically impacted by continental aerosols, making it an excellent location to study the cloud condensation nuclei (CCN) budget in a remote marine region periodically perturbed by anthropogenic emissions, and to investigate the impacts of long-range transport of aerosols on remote marine clouds. The Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA) campaign was motivated by the need of comprehensive in situ measurements for improving the understanding of marine boundary layer CCN budget, cloud and drizzle microphysics, and the impact of aerosol on marine low cloud and precipitation. The airborne deployments took place from 21 June to 20 July 2017 and from 15 January to 18 February 2018 in the Azores. The flights were designed to maximize the synergy between in situ airborne measurements and ongoing long-term observations at a ground site. Here we present measurements, observation strategy, meteorological conditions during the campaign, and preliminary findings. Finally, we discuss future analyses and modeling studies that improve the understanding and representation of marine boundary layer aerosols, clouds, precipitation, and the interactions among them.

CURRENT AFFILIATIONS: JUUL Labs, San Francisco, California;

CURRENT AFFILIATIONS: Ohio State University, Columbus, Ohio;

CURRENT AFFILIATIONS: Environmental and Climate Science Department, Brookhaven National Laboratory, Upton, New York

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jian Wang, jian@wustl.edu

Supplementary Materials

    • Supplemental Materials (PDF 1.54 MB)
Save