• Atkins, N. T. , and R. M. Wakimoto , 1991: Wet microburst activity over the southeastern United States: Implications for forecasting. Wea. Forecasting , 6, 470482, https://doi.org/10.1175/1520-0434(1991)006<0470:WMAOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Barnet, C. D. , N. Smith , M. J. Folmer , J. P. Dunion , J. Zawislak , A. Layns , R. Esmaili , and M. D. Goldberg , 2019: The use of temperature and water vapor profiles for tropical cyclone weather applications: Recent activities within the NOAA/JPSS proving ground sounding initiative. 15th Annual Symp. on New Generation Operational Environmental Satellite Systems, Phoenix, AZ, Amer. Meteor. Soc., J6.3, https://ams.confex.com/ams/2019Annual/meetingapp.cgi/Paper/353354.

  • Bauer, P. , A. Thorpe , and G. Brunet , 2015: The quiet revolution of numerical weather prediction. Nature , 525, 4755, https://doi.org/10.1038/nature14956.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G. , and Coauthors, 2016: A North American hourly assimilation and model forecast cycle: The rapid refresh. Mon. Wea. Rev. , 144, 16691694, https://doi.org/10.1175/MWR-D-15-0242.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berndt, E. , and Coauthors, 2020: Gridded satellite sounding retrievals in operational weather forecasting: Product description and emerging applications. Remote Sens. , 12, 3311, https://doi.org/10.3390/rs12203311.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blumberg, W. G. , K. T. Halbert , T. A. Supinie , P. T. Marsh , R. L. Thompson , and J. A. Hart , 2017: SHARPpy: An open-source sounding analysis toolkit for the atmospheric sciences. Bull. Amer. Meteor. Soc. , 98, 16251636, https://doi.org/10.1175/BAMS-D-15-00309.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bureau of Meteorology, 2019: A hot and dry Australian summer means heatwaves and fire risk ahead. http://media.bom.gov.au/social/blog/2280/a-hot-and-dry-australian-summer-means-heatwaves-and-fire-risk-ahead/.

    • Search Google Scholar
    • Export Citation
  • Butler, A. H. , D. J. Seidel , S. C. Hardiman , N. Butchart , T. Birner , and A. Match , 2015: Defining sudden stratospheric warmings. Bull. Amer. Meteor. Soc. , 96, 19131928, https://doi.org/10.1175/BAMS-D-13-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T. , 1974: Remote sounding of cloudy atmospheres. I. The single cloud layer. J. Atmos. Sci. , 31, 233243, https://doi.org/10.1175/1520-0469(1974)031<0233:RSOCAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T. , 1977: Remote sounding of cloudy atmospheres. II. Multiple cloud formations. J. Atmos. Sci. , 34, 744757, https://doi.org/10.1175/1520-0469(1977)034<0744:RSOCAI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chahine, M. T. , 1982: Remote sensing of cloud parameters. J. Atmos. Sci. , 39, 159170, https://doi.org/10.1175/1520-0469(1982)039<0159:RSOCP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Divakarla, M. , C. Barnet , M. Goldberg , L. McMillin , E. Maddy , W. Wolf , L. Zhou , and X. Liu , 2006: Validation of Atmospheric Infrared Sounder (AIRS) temperature, water vapor, and ozone retrievals with matched radiosonde measurements and forecasts. J. Geophys. Res. , 111, D09S15, https://doi.org/10.1117/12.694116.

    • Search Google Scholar
    • Export Citation
  • Dole, R. M. , and Coauthors, 2018: Advancing science and services during the 2015/16 El Niño: The NOAA El Niño rapid response field campaign. Bull. Amer. Meteor. Soc. , 99, 9751001, https://doi.org/10.1175/BAMS-D-16-0219.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dowdy, A. J. , R. A. Vincent , D. J. Murphy , M. Tsutsumi , D. M. Riggin , and M. J. Jarvis , 2004: The large-scale dynamics of the mesosphere–lower thermosphere during the Southern Hemisphere stratospheric warming of 2002. Geophys. Res. Lett. , 31, L14102, https://doi.org/10.1029/2004GL020282.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Esmaili, R. B. , and Coauthors, 2020: Adapting satellite soundings for operational forecasting within the hazardous weather testbed. Remote Sens. , 12, 886, https://doi.org/10.3390/rs12050886.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyre, J. R. , S. J. English , and M. Forsythe , 2020: Assimilation of satellite data in numerical weather prediction. Part I: The early years. Quart. J. Roy. Meteor. Soc. , 146, 4968, https://doi.org/10.1002/qj.3654.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ferraro, R. , J. Beauchamp , D. Cecil , and G. Heymsfield , 2015: A prototype hail detection algorithm and hail climatology developed with the Advanced Microwave Sounding Unit (AMSU). Atmos. Res. , 163, 2435, https://doi.org/10.1016/j.atmosres.2014.08.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gambacorta, A. , and C. D. Barnet , 2013: Methodology and information content of the NOAA NESDIS operational channel selection for the Cross-Track Infrared Sounder (CrIS). IEEE Trans. Geosci. Remote Sens. , 51, 32073216, https://doi.org/10.1109/TGRS.2012.2220369.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gambacorta, A. , and Coauthors, 2014: An experiment using high spectral resolution CrIS measurements for atmospheric trace gases: Carbon monoxide retrieval impact study. IEEE Geosci. Remote Sens. Lett. , 11, 16391643, https://doi.org/10.1109/LGRS.2014.2303641.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R. , and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate , 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goldberg, M. D. , Y. Qu , L. M. McMillin , W. Wolf , Z. Lihang , and M. Divakarla , 2003: AIRS near-real-time products and algorithms in support of operational numerical weather prediction. IEEE Trans. Geosci. Remote Sens. , 41, 379389, https://doi.org/10.1109/TGRS.2002.808307.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gumley, L. , M. Goldberg , B. Flynn , and D. Santek , 2018: NOAA Direct Broadcast Real-Time Network (DBRTN): Advanced infrared and microwave sounder data from polar orbiting satellites for numerical weather prediction (NWP) and other time-sensitive applications. 2018 Fall Meeting, Washington, DC, Amer. Geophys. Union, Abstract IN42B-07.

  • Han, Y. , and Coauthors, 2013: Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation ­activities, and record data quality. J. ­Geophys. Res. Atmos. , 118, 1273412748, https://doi.org/10.1002/2013JD020344.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazardous Weather Testbed, 2019a: Wherefore art thou convection? 9 May, http://goesrhwt.blogspot.com/2019/05/wherefore-art-thou-convection.html.

  • Hazardous Weather Testbed, 2019b: NUCAPS lapse rates. 7 May, http://goesrhwt.blogspot.com/2019/05/nucaps-lapse-rates.html.

  • Hazardous Weather Testbed, 2019c: TAE Mesoanalysis #1. 25 April, http://goesrhwt.blogspot.com/2019/04/tae-mesoanalysis-1.html.

  • Hollingsworth, A. , and Coauthors, 2008: Toward a monitoring and forecasting system for atmospheric composition: The GEMS project. Bull. Amer. Meteor. Soc. , 89, 11471164, https://doi.org/10.1175/2008BAMS2355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hoover, K. , and L. Hanson , 2021: Wildfire statistics. Congressional Research Service, 3 pp., https://fas.org/sgp/crs/misc/IF10244.pdf.

  • Houze, R. A. , 2010: Clouds in tropical cyclones. Mon. Wea. Rev. , 138, 293344, https://doi.org/10.1175/2009MWR2989.1.

  • Inness, A. , and Coauthors, 2013: The MACC reanalysis: An 8 yr data set of atmospheric composition. Atmos. Chem. Phys. , 13, 40734109, https://doi.org/10.5194/acp-13-4073-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iturbide-Sanchez, F. , S. R. S. Silva , Q. Liu , K. L. Pryor , M. E. Pettey , and N. R. Nalli , 2018: Toward the operational weather forecasting application of atmospheric stability products derived from NUCAPS CrIS/ATMS soundings. IEEE Trans. Geosci. Remote Sens. , 56, 45224545, https://doi.org/10.1109/TGRS.2018.2824829.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Joo, S. , J. Eyre , and R. Marriott , 2013: The impact of MetOp and other satellite data within the Met Office Global NWP system using an adjoint-based sensitivity method. Mon. Wea. Rev. , 141, 33313342, https://doi.org/10.1175/MWR-D-12-00232.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kablick, G. P., III, D. R. Allen , M. D. Fromm , and G. E. Nedoluha , 2020: Australian PyroCb smoke generates synoptic-scale stratospheric anticyclones. Geophys. Res. Lett. , 47, e2020GL088101, https://doi.org/10.1029/2020GL088101

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, E. , C.-H. J. Lyu , K. Anderson , R. Vincent Leslie , and W. J. Blackwell , 2014: S-NPP ATMS instrument prelaunch and on-orbit performance evaluation. J. Geophys. Res. Atmos. , 119, 56535670, https://doi.org/10.1002/2013JD020483.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knupp, K. R. , 1989: Numerical simulation of low-level downdraft initiation within precipitating cumulonimbi: Some preliminary results. Mon. Wea. Rev. , 117, 15171529, https://doi.org/10.1175/1520-0493(1989)117<1517:NSOLLD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kondragunta, S. , and Coauthors, 2005: Vertical structure of the anomalous 2002 Antarctic ozone hole. J. Atmos. Sci. , 62, 801811, https://doi.org/10.1175/JAS-3324.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuciauskas, A. , R. Esmaili , A. Reale , and N. Nalli , 2020: Using NUCAPS to observe the thermodynamic structure of strong Saharan air layer outbreaks about its source within the deserts of northeast Africa. 16th Annual Symp. on New Generation Operational Environmental Satellite Systems, Boston, MA, Amer. Meteor. 11A.4, https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/371041

  • Laviola, S. , V. Levizzani , R. Ferraro , and J. Beauchamp , 2020: Hailstorm detection by satellite microwave radiometers. Remote Sens. , 12, 621, https://doi.org/10.3390/rs12040621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lewis, D. , 2019: Rare warming over Antarctica reveals power of stratospheric models. Nature , 574, 160161, https://doi.org/10.1038/d41586-019-02985-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Matsuno, T. , 1971: A dynamical model of the stratospheric sudden warming. J. Atmos. Sci. , 28, 14791494, https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McInturff, R. M. , 1978: Stratospheric warmings: Synoptic, dynamic and general-circulation aspects. NASA-RP-1017, 174 pp., https://ntrs.nasa.gov/citations/19780010687.

  • Membrive, O. , and Coauthors, 2017: AirCore-HR: A high-resolution column sampling to enhance the vertical description of CH4 and CO2. Atmos. Meas. Tech. , 10, 21632181, https://doi.org/10.5194/amt-10-2163-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Menzel, W. P. , T. J. Schmit , P. Zhang , and J. Li , 2018: Satellite-based Atmospheric Infrared Sounder development and applications. Bull. Amer. Meteor. Soc. , 99, 583603, https://doi.org/10.1175/BAMS-D-16-0293.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Met Office, 2020: Causes of extreme fire weather in Australia. www.metoffice.gov.uk/research/news/2020/causes-of-extreme-fire-weather-in-australia.

    • Search Google Scholar
    • Export Citation
  • Miyazaki, K. , H. J. Eskes , and K. Sudo , 2015: A tropospheric chemistry reanalysis for the years 2005-2012 based on an assimilation of OMI, MLS, TES, and MOPITT satellite data. Atmos. Chem. Phys. , 15, 83158348, https://doi.org/10.5194/acp-15-8315-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nalli, N. R. , and Coauthors, 2013: Validation of satellite sounder environmental data records: Application to the Cross-track Infrared Microwave Sounder Suite. J. Geophys. Res. Atmos. , 118, 1362813643, https://doi.org/10.1002/2013JD020436.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nalli, N. R. , and Coauthors, 2018a: Validation of atmospheric profile retrievals from the SNPP NOAA-unique combined atmospheric processing system. Part 1: Temperature and moisture. IEEE Trans. Geosci. Remote Sens. , 56, 180190, https://doi.org/10.1109/TGRS.2017.2744558.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nalli, N. R. , and Coauthors, 2018b: Validation of atmospheric profile retrievals from the SNPP NOAA-unique combined atmospheric processing system. Part 2: Ozone. IEEE Trans. Geosci. Remote Sens. , 56, 598607, https://doi.org/10.1109/TGRS.2017.2762600.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nalli, N. R. , and Coauthors, 2020: Validation of carbon trace gas profile retrievals from the NOAA-unique combined atmospheric processing system for the cross-track infrared sounder. Remote Sens. , 12, 3245, https://doi.org/10.3390/rs12193245.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nolan, R. H. , M. M. Boer , L. Collins , V. Resco de Dios , H. Clarke , M. Jenkins , B. Kenny , and R. A. Bradstock , 2020: Causes and consequences of eastern Australia’s 2019–20 season of mega-fires. Global Change Biol. , 26, 10391041, https://doi.org/10.1111/gcb.14987.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NUCAPS, 2021: The NOAA Unique CrIS/ATMS Processing System (NUCAPS): Algorithm theoretical basis documentation, version 3.1. NOAA Tech. Doc., 115 pp., www.star.nesdis.noaa.gov/jpss/documents/ATBD/ATBD_NUCAPS_v3.1.pdf.

    • Search Google Scholar
    • Export Citation
  • Peuch, V. , and Coauthors, 2018: The use of satellite data in the Copernicus Atmosphere Monitoring Service (CAMS). 2018 IEEE International Geoscience and Remote Sensing Symp., Valencia, Spain, IEEE, 15941596, https://doi.org/10.1109/IGARSS.2018.8518698.

    • Crossref
    • Export Citation
  • Pryor, K. L. , 2015: Progress and developments of downburst ­prediction applications of GOES. Wea. Forecasting , 30, 11821200, https://doi.org/10.1175/WAF-D-14-00106.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ralph, F. M. , and Coauthors, 2013: The emergence of weather-related test beds linking research and forecasting operations. Bull. Amer. Meteor. Soc. , 94, 11871211, https://doi.org/10.1175/BAMS-D-12-00080.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reale, T. , B. Sun , F. H. Tilley , and M. Pettey , 2012: The NOAA Products Validation System (NPROVS). J. Atmos. Oceanic Technol. , 29, 629645, https://doi.org/10.1175/JTECH-D-11-00072.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodgers, C. D. , 2000: Inverse Methods for Atmospheric Sounding: Theory and Practice. World Scientific Publishing Co, 256 pp.

  • Rosenkranz, P. W. , 2001: Retrieval of temperature and moisture profiles from AMSU-A and AMSU-B measurements. IEEE Trans. Geosci. Remote Sens. , 39, 24292435, https://doi.org/10.1109/36.964979.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Safieddine, S. , and Coauthors, 2020: Antarctic ozone enhancement during the 2019 sudden stratospheric warming event. Geophys. Res. Lett. , 47, e2020GL087810, https://doi.org/10.1029/2020GL087810.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T. , 1986: The dryline. Mesoscale Meteorology and Forecasting , P. S. Ray , Ed., Amer. Meteor. Soc., 549572.

  • Schulthess, T. C. , P. Bauer , N. Wedi , O. Fuhrer , T. Hoefler , and C. Schar , 2019: Reflecting on the goal and baseline for exascale computing: A roadmap based on weather and climate simulations. Comput. Sci. Eng. , 21, 3041, https://doi.org/10.1109/MCSE.2018.2888788.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, N. , and C. D. Barnet , 2019: Uncertainty characterization and propagation in the Community Long-Term Infrared Microwave Combined Atmospheric Product System (CLIMCAPS). Remote Sens. , 11, 1227, https://doi.org/10.3390/rs11101227.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, N. , and C. D. Barnet , 2020: CLIMCAPS observing capability for temperature, moisture and trace gases from AIRS/AMSU and CrIS/ATMS. Atmos. Meas. Tech. Discuss. , 13, 44374459, https://doi.org/10.5194/amt-13-4437-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, W. L. , Q. Zhang , M. Shao , and E. Weisz , 2020: Improved severe weather forecasts using LEO and GEO satellite soundings. J. Atmos. Oceanic Technol. , 37, 12031218, https://doi.org/10.1175/JTECH-D-19-0158.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Solomon, S. , 1999: Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. , 37, 275316, https://doi.org/10.1029/1999RG900008.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C. , 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci. , 44, 17521774, https://doi.org/10.1175/1520-0469(1987)044<1752:AMOIDD>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sun, B. , A. Reale , F. H. Tilley , M. E. Pettey , N. R. Nalli , and C. D. Barnet , 2017: Assessment of NUCAPS S-NPP CrIS/ATMS sounding products using reference and conventional radiosonde observations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. , 10, 24992509, https://doi.org/10.1109/JSTARS.2017.2670504.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susskind, J. , C. D. Barnet , and J. M. Blaisdell , 2003: Retrieval of atmospheric and surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE Trans. Geosci. Remote Sens. , 41, 390409, https://doi.org/10.1109/TGRS.2002.808236.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Susskind, J. , C. D. Barnet , J. M. Blaisdell , L. Iredell , F. Keita , L. Kouvaris , G. Molnar , and M. Chahine , 2006: Accuracy of geophysical parameters derived from Atmospheric Infrared Sounder/Advanced Microwave Sounding Unit as a function of fractional cloud cover. J. Geophys. Res. , 111, D0 9S17, https://doi.org/10.1029/2005JD006272.

    • Search Google Scholar
    • Export Citation
  • Susskind, J. , J. M. Blaisdell , and L. Iredell , 2014: Improved methodology for surface and atmospheric soundings, error estimates, and quality control procedures: The Atmospheric Infrared Sounder science team version-6 retrieval algorithm. J. Appl. Remote Sens. , 8, 084994, https://doi.org/10.1117/1.JRS.8.084994.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Venkat Ratnam, M. , T. Tsuda , C. Jacobi , and Y. Aoyama , 2004: Enhancement of gravity wave activity observed during a major Southern Hemisphere stratospheric warming by CHAMP/GPS measurements. Geophys. Res. Lett. , 31, L16101, https://doi.org/10.1029/2004GL019789.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Warner, J. , F. Carminati , Z. Wei , W. Lahoz , and J. L. Attié , 2013: Tropospheric carbon monoxide variability from AIRS under clear and cloudy conditions. Atmos. Chem. Phys. , 13, 1246912479, https://doi.org/10.5194/acp-13-12469-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weaver, G. M. , N. Smith , E. B. Berndt , K. D. White , J. F. Dostalek , and B. T. Zadovsky , 2019: Addressing the cold air aloft aviation challenge with satellite sounding observations. J. Oper. Meteor. , 7, 138152, https://doi.org/10.15191/nwajom.2019.0710.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wofsy, S. C. , and Coauthors, 2018: ATom: Merged Atmospheric Chemistry, Trace Gases, and Aerosols. ORNL Distributed Active Archive Center, accessed 25 October 2021, https://doi.org/10.3334/ORNLDAAC/1581.

    • Crossref
    • Export Citation
  • Wunch, D. , and Coauthors, 2011: The total carbon column observing network. Philos. Trans. Roy. Soc. London , A369, 20872112, https://doi.org/10.1098/rsta.2010.0240.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L. , T. J. Lee , and R. A. Pielke , 1997: Convective initiation at the dryline: A modeling study. Mon. Wea. Rev. , 125, 10011026, https://doi.org/10.1175/1520-0493(1997)125<1001:CIATDA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 18 18 0
Full Text Views 766 528 29
PDF Downloads 616 486 34

Validation and Utility of Satellite Retrievals of Atmospheric Profiles in Detecting and Monitoring Significant Weather Events

View More View Less
  • 1 NOAA/JPSS, Lanham, Maryland;
  • | 2 Science and Technology Corporation, Columbia, Maryland;
  • | 3 I.M. Systems Group, NOAA/NESDIS/STAR, College Park, Maryland;
  • | 4 Science and Technology Corporation, Columbia, Maryland;
  • | 5 I.M. Systems Group, NOAA/NESDIS/STAR, College Park, Maryland;
  • | 6 NOAA/JPSS, Lanham, Maryland;
  • | 7 Science and Technology Corporation, Columbia, Maryland;
  • | 8 I.M. Systems Group, NOAA/NESDIS/STAR, College Park, Maryland;
  • | 9 CISESS, University of Maryland, College Park, College Park, Maryland
  • | 10 I.M. Systems Group, NOAA/NESDIS/STAR, College Park, Maryland;
  • | 11 NOAA/JPSS, Lanham, Maryland;
  • | 12 I.M. Systems Group, NOAA/NESDIS/STAR, College Park, Maryland;
Restricted access

Abstract

Infrared and microwave sounder measurements from polar-orbiting satellites are used to retrieve profiles of temperature, water vapor, and trace gases utilizing a suite of algorithms called the National Oceanic and Atmospheric Administration (NOAA) Unique Combined Atmospheric Processing System (NUCAPS). Meteorologists operationally use the retrievals similar to radiosonde measurements to assess atmospheric stability and aid them in issuing forecasts and severe weather warnings. Measurements of trace gases by NUCAPS enable detection, tracking, and monitoring of greenhouse gases and emissions from fires that impact air quality. During the polar winters, when ultraviolet measurements of ozone are not possible, absorption features in the infrared spectrum of the sounders enable the assessment of ozone concentration in the stratosphere. These retrievals are used as inputs to monitor the ozone hole over Antarctica. This article illustrates the utility of NUCAPS atmospheric profile retrievals in assessing meteorological events using several examples of severe thunderstorms, tropical cyclones, fires, and ozone maps.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. Kalluri, satya.kalluri@noaa.gov

Abstract

Infrared and microwave sounder measurements from polar-orbiting satellites are used to retrieve profiles of temperature, water vapor, and trace gases utilizing a suite of algorithms called the National Oceanic and Atmospheric Administration (NOAA) Unique Combined Atmospheric Processing System (NUCAPS). Meteorologists operationally use the retrievals similar to radiosonde measurements to assess atmospheric stability and aid them in issuing forecasts and severe weather warnings. Measurements of trace gases by NUCAPS enable detection, tracking, and monitoring of greenhouse gases and emissions from fires that impact air quality. During the polar winters, when ultraviolet measurements of ozone are not possible, absorption features in the infrared spectrum of the sounders enable the assessment of ozone concentration in the stratosphere. These retrievals are used as inputs to monitor the ozone hole over Antarctica. This article illustrates the utility of NUCAPS atmospheric profile retrievals in assessing meteorological events using several examples of severe thunderstorms, tropical cyclones, fires, and ozone maps.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: S. Kalluri, satya.kalluri@noaa.gov
Save