• Abarca, S. F. , M. T. Montgomery , S. A. Braun , and J. Dunion , 2016: On the secondary eyewall formation of Hurricane Edouard (2014). Mon. Wea. Rev., 144, 33213331, https://doi.org/10.1175/MWR-D-15-0421.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aberson, S. D., 2003: Targeted observations to improve operational tropical cyclone track forecast guidance. Mon. Wea. Rev., 131, 16131628, https://doi.org/10.1175//2550.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aberson, S. D., 2010: 10 years of hurricane synoptic surveillance (1997–2006). Mon. Wea. Rev., 138, 15361549, https://doi.org/10.1175/2009MWR3090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aberson, S. D. , A. Aksoy , K. J. Sellwood , T. Vukicevic , and X. Zhang , 2015: Assimilation of high-resolution tropical cyclone observations with an ensemble Kalman filter using HEDAS: Evaluation of 2008–11 HWRF forecasts. Mon. Wea. Rev., 143, 511523, https://doi.org/10.1175/MWR-D-14-00138.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aberson, S. D. , K. J. Sellwood , and P. A. Leighton , 2017: Calculating dropwindsonde location and time from TEMP-DROP messages for accurate assimilation and analysis. J. Atmos. Oceanic Technol., 34, 16731678, https://doi.org/10.1175/JTECH-D-17-0023.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ahern, K. , M. A. Bourassa , R. E. Hart , J. A. Zhang , and R. F. Rogers , 2019: Observed kinematic and thermodynamic structure in the hurricane boundary layer during intensity change. Mon. Wea. Rev., 147, 27652785, https://doi.org/10.1175/MWR-D-18-0380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aksoy, A., 2013: Storm-relative observations in tropical cyclone data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 41, 506522, https://doi.org/10.1175/MWR-D-12-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aksoy, A. , S. Lorsolo , T. Vukicevic , K. J. Sellwood , S. D. Aberson , and F. Zhang , 2012: The HWRF Hurricane Ensemble Data Assimilation System (HEDAS) for high-resolution data: The impact of airborne Doppler radar observations in an OSSE. Mon. Wea. Rev., 140, 18431862, https://doi.org/10.1175/MWR-D-11-00212.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aksoy, A. , S. D. Aberson , T. Vukicevic , K. J. Sellwood , and X. Zhang , 2013: Assimilation of high-resolution tropical cyclone observations with an ensemble Kalman filter using NOAA/AOML/HRD’s HEDAS: Evaluation of the 2008–11 vortex-scale analyses. Mon. Wea. Rev., 143, 511523, https://doi.org/10.1175/MWR-D-12-00194.1.

    • Search Google Scholar
    • Export Citation
  • Alaka, G. J., Jr., X. Zhang , S. G. Gopalakrishnan , S. B. Goldenberg , and F. D. Marks , 2017: Performance of basin-scale HWRF tropical cyclone track forecasts. Wea. Forecasting, 32, 12531271, https://doi.org/10.1175/WAF-D-16-0150.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alaka, G. J., Jr., X. Zhang , S. G. Gopalakrishnan , Z. Zhang , F. D. Marks Jr., and R. Atlas , 2019: Track uncertainty in high-resolution HWRF ensemble forecasts of Hurricane Joaquin. Wea. Forecasting, 34, 18891908, https://doi.org/10.1175/WAF-D-19-0028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alford, A. A. , J. A. Zhang , M. I. Biggerstaff , P. Dodge , F. D. Marks , and D. J. Bodine , 2020: Transition of the hurricane boundary layer during the landfall of Hurricane Irene. J. Atmos. Sci., 77, 35093531, https://doi.org/10.1175/JAS-D-19-0290.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alvey, G. R., III, J. Zawislak , and E. Zipser , 2015: Precipitation properties observed during tropical cyclone intensity change. Mon. Wea. Rev., 143, 44764492, https://doi.org/10.1175/MWR-D-15-0065.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Alvey, G. R., III, E. Zipser , and J. Zawislak , 2020: How does Hurricane Edouard (2014) evolve toward symmetry before rapid intensification? A high-resolution ensemble study. J. Atmos. Sci., 77, 13291351, https://doi.org/10.1175/JAS-D-18-0355.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Avila, L. A. , S. R. Stewart , R. Berg , and A. B. Hagen , 2020: National Hurricane Center tropical cyclone report: Hurricane Dorian (AL052019). National Hurricane Center Rep., 74 pp., www.nhc.noaa.gov/data/tcr/AL052019_Dorian.pdf.

    • Search Google Scholar
    • Export Citation
  • Berg, R., 2016: National Hurricane Center tropical cyclone report: Hurricane Joaquin (AL112015). National Hurricane Center Rep., 36 pp., www.nhc.noaa.gov/data/tcr/AL112015_Joaquin.pdf.

    • Search Google Scholar
    • Export Citation
  • Berg, R. , and B. J. Reinhart , 2021: National Hurricane Center tropical cyclone report: Hurricane Sally (AL192020). National Hurricane Center Rep., 69 pp., www.nhc.noaa.gov/data/tcr/AL192020_Sally.pdf.

    • Search Google Scholar
    • Export Citation
  • Beven, J. L., II, R. Berg , and A. Hagen , 2019: National Hurricane Center tropical cyclone report: Hurricane Michael (AL142018). National Hurricane Center Rep., 86 pp., www.nhc.noaa.gov/data/tcr/AL142018_Michael.pdf.

    • Search Google Scholar
    • Export Citation
  • Bhatia, K. T. , and D. S. Nolan , 2013: Relating the skill of tropical cyclone intensity forecasts to the synoptic environment. Wea. Forecasting, 28, 961980, https://doi.org/10.1175/WAF-D-12-00110.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Black, P. , L. Harrison , M. Beaubien , R. Bluth , R. Woods , A. Penny , R. W. Smith , and J. D. Doyle , 2017: High-Definition Sounding System (HDSS) for atmospheric profiling. J. Atmos. Oceanic Tech., 34, 777796, https://doi.org/10.1175/JTECH-D-14-00210.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Blake, E. S. , and D. A. Zelinsky , 2018: National Hurricane Center tropical cyclone report: Hurricane Harvey (AL092017). National Hurricane Center Rep., 77 pp., www.nhc.noaa.gov/data/tcr/AL092017_Harvey.pdf.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A. , P. A. Newman , and G. M. Heymsfield , 2016: NASA’s Hurricane and Severe Storm Sentinel (HS3) investigation. Bull. Amer. Meteor. Soc., 97, 20852102, https://doi.org/10.1175/BAMS-D-15-00186.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bu, Y. P. , R. G. Fovell , and K. L. Corbosiero , 2017: The influences of boundary layer mixing and cloud-radiative forcing on tropical cyclone size. J. Atmos. Sci., 74, 12731292, https://doi.org/10.1175/JAS-D-16-0231.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bucci, L. R. , C. O’Handley , G. D. Emmitt , J. A. Zhang , K. Ryan , and R. Atlas , 2018: Validation of an airborne Doppler wind lidar in tropical cyclones. Sensors, 18, 4288, https://doi.org/10.3390/s18124288.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P. , A. S. Latto , and R. Berg , 2018: National Hurricane Center tropical cyclone report: Hurricane Irma (AL112017). National Hurricane Center Rep., 111 pp., www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf.

    • Search Google Scholar
    • Export Citation
  • Cangialosi, J. P. , E. Blake , M. DeMaria , A. Penny , A. Latto , E. Rappaport , and V. Tallapragada , 2020: Recent progress in tropical cyclone intensity forecasting at the National Hurricane Center. Wea. Forecasting, 35, 19131922, https://doi.org/10.1175/WAF-D-20-0059.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chen, H. , and S. Gopalakrishnan , 2015: A study on the asymmetric rapid intensification of Hurricane Early (2010) using the HWRF system. J. Atmos. Sci., 72, 531550, https://doi.org/10.1175/JAS-D-14-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christophersen, H. , A. Aksoy , J. Dunion , and K. Sellwood , 2017: The impact of NASA Global Hawk unmanned aircraft dropwindsonde observations on tropical cyclone track, intensity, and structure: Case studies. Mon. Wea. Rev., 145, 18171830, https://doi.org/10.1175/MWR-D-16-0332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Christophersen, H. , R. Atlas , A. Aksoy , and J. Dunion , 2018: Combined use of satellite observations and Global Hawk unmanned aircraft dropwindsondes for improved tropical cyclone analyses and forecasts. Wea. Forecasting, 33, 10211031, https://doi.org/10.1175/WAF-D-17-0167.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J. , E. A. Kalina , J. A. Zhang , and E. W. Uhlhorn , 2013: Observations of air–sea interaction and intensity change in hurricanes. Mon. Wea. Rev., 141, 23682382, https://doi.org/10.1175/MWR-D-12-00070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J. , E. A. Kalina , E. W. Uhlhorn , A. M. Farber , and B. Damiano , 2016: Coyote unmanned aircraft system observations in Hurricane Edouard (2014). Earth Space Sci., 3, 370380, https://doi.org/10.1002/2016EA000187.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cione, J. J. , and Coauthors, 2020: Eye of the storm: Observing hurricanes with a small unmanned aircraft system. Bull. Amer. Meteor. Soc., 101, E186E205, https://doi.org/10.1175/BAMS-D-19-0169.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didlake, A. C. , G. H. Heymsfield , P. D. Reasor , and S. R. Guimond , 2017: Concentric eyewall asymmetries in Gonzalo (2014) observed by airborne radar. Mon. Wea. Rev., 145, 729749, https://doi.org/10.1175/MWR-D-16-0175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didlake, A. C. , P. D. Reasor , R. F. Rogers , and W.-C. Lee , 2018: Dynamics of the transition from spiral rainbands to a secondary eyewall in Hurricane Earl (2010). J. Atmos. Sci., 75, 29092929, https://doi.org/10.1175/JAS-D-17-0348.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Domingues, R. , and Coauthors, 2019: Ocean observations in support of studies and forecasts of tropical and extratropical cyclones. Front. Mar. Sci., 6, 23, https://doi.org/10.3389/fmars.2019.00446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J. , and Coauthors, 2017: Impact of assimilating underwater glider data on Hurricane Gonzalo (2014) forecasts. Wea. Forecasting, 32, 11431159, https://doi.org/10.1175/WAF-D-16-0182.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dong, J. , and Coauthors, 2020: The evaluation of real-time Hurricane Analysis and Forecast System (HAFS) Stand-Alone Regional (SAR) model performance for the 2019 Atlantic hurricane season. Atmosphere, 11, 16, https://doi.org/10.3390/atmos11060617.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dougherty, E. M. , J. Molinari , R. F. Rogers , J. A. Zhang , and J. P. Kossin , 2018: Hurricane Bonnie (1998): Maintaining intensity during high vertical wind shear and an eyewall replacement cycle. Mon. Wea. Rev., 146, 33833399, https://doi.org/10.1175/MWR-D-18-0030.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Doyle, J. D. , and Coauthors, 2017: A view of tropical cyclones from above: The Tropical Cyclone Intensity (TCI) experiment. Bull. Amer. Meteor. Soc., 98, 21132134, https://doi.org/10.1175/BAMS-D-16-0055.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1995: Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. J. Atmos. Sci., 52, 39693976, https://doi.org/10.1175/1520-0469(1995)052<3969:SOTCTS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fernandez, D. E. , E. M. Kerr , A. Castells , J. R. Carswell , S. J. Frasier , P. S. Chang , P. G. Black , and F. D. Marks , 2005: IWRAP: The Imaging Wind and Rain Airborne Profiler for remote sensing of the ocean and the atmospheric boundary layer within tropical cyclones. IEEE Trans. Geosci. Remote Sens., 43, 17751787, https://doi.org/10.1109/TGRS.2005.851640.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fischer, M. S. , R. F. Rogers , and P. D. Reasor , 2020: The rapid intensification and eyewall replacement cycles of Hurricane Irma (2017). Mon. Wea. Rev., 148, 9811004, https://doi.org/10.1175/MWR-D-19-0185.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuchs-Stone, Z. , D. J. Raymond , and S. Stenic , 2020: OTREC2019: Convection over the east Pacific and southwest Caribbean. Geophys. Res. Lett., 47, e2020GL087564, https://doi.org/10.1029/2020GL087564.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gall, R. , J. Franklin , F. Marks , E. N. Rappaport , and F. Toepfer , 2013: The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc., 94, 329343, https://doi.org/10.1175/BAMS-D-12-00071.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., 1997: Evaluation of a fully three-dimensional variational Doppler analysis technique. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 422423.

    • Search Google Scholar
    • Export Citation
  • Goerss, J. S., 2009: Impact of satellite observations on the tropical cyclone track forecasts of the Navy Operational Global Atmospheric Prediction System. Mon. Wea. Rev., 137, 4150, https://doi.org/10.1175/2008MWR2601.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G. , F. Marks Jr., J. A. Zhang , X. Zhang , J.-W. Bao , and V. Tallapragada , 2013: A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci., 70, 524541, https://doi.org/10.1175/JAS-D-11-0340.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gopalakrishnan, S. G., and Coauthors, 2020: 2019 Hurricane Forecast Improvement Project R&D activities summary: Recent results and operational implementation. HFIP Tech. Rep. HFIP2020-1, 45 pp., https://doi.org/10.25923/qzd3-m787.

    • Search Google Scholar
    • Export Citation
  • Guimond, S. R. , L. Tian , G. M. Heymsfield , and S. J. Frasier , 2014: Wind retrieval algorithms for the IWRAP and HIWRAP airborne doppler radars with applications to hurricanes. J. Atmos. Oceanic Technol., 31, 11891215, https://doi.org/10.1175/JTECH-D-13-00140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Guimond, S. R. , P. D. Reasor , G. M. Heymsfield , and M. M. McLinden , 2020: The dynamics of vortex Rossby waves and secondary eyewall development in Hurricane Matthew (2016): New insights from radar measurements. J. Atmos. Sci., 77, 23492374, https://doi.org/10.1175/JAS-D-19-0284.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T. , L. Harris , and S.-J. Lin , 2018: Evaluation of tropical cyclone structure forecasts in a high-resolution version of the multiscale GFDL fvGFS model. Wea. Forecasting, 33, 419442, https://doi.org/10.1175/WAF-D-17-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T. , X. Zhang , W. Ramstrom , S. Gopalakrishan , F. D. Marks , and J. A. Zhang , 2020: High-resolution ensemble HFV3 forecasts of Hurricane Michael (2018): Rapid intensification in shear. Mon. Wea. Rev., 148, 20092032, https://doi.org/10.1175/MWR-D-19-0275.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Holbach, H. M. , E. W. Uhlhorn , and M. A. Bourassa , 2018: Off-nadir SFMR brightness temperature measurements in high-wind conditions. J. Atmos. Oceanic Technol., 35, 18651879, https://doi.org/10.1175/JTECH-D-18-0005.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jaimes, B. , L. K. Shay , and E. W. Uhlhorn , 2015: Enthalpy and momentum fluxes during Hurricane Earl relative to underlying ocean features. Mon. Wea. Rev., 43, 111131, https://doi.org/10.1175/MWR-D-13-00277.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J. , and M. DeMaria , 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 10931108, https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaplan, J. , and Coauthors, 2015: Evaluating environmental impacts on tropical cyclone rapid intensification predictability utilizing statistical models. Wea. Forecasting, 30, 13741396, https://doi.org/10.1175/WAF-D-15-0032.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klotz, B. W. , and E. W. Uhlhorn , 2014: Improved stepped frequency microwave radiometer tropical cyclone surface winds in heavy precipitation. J. Atmos. Oceanic Technol., 31, 23922408, https://doi.org/10.1175/JTECH-D-14-00028.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Latto, A. , and R. Berg , 2020: National Hurricane Center tropical cyclone report: Tropical Storm Imelda (AL112019). National Hurricane Center Rep., 28 pp., www.nhc.noaa.gov/data/tcr/AL112019_Imelda.pdf.

    • Search Google Scholar
    • Export Citation
  • Latto, A. , A. Hagen , and R. Berg , 2021: National Hurricane Center tropical cyclone report: Hurricane Isaias (AL092020). National Hurricane Center Rep., 84 pp., www.nhc.noaa.gov/data/tcr/AL092020_Isaias.pdf.

    • Search Google Scholar
    • Export Citation
  • Leighton, H. , S. Gopalakrishnan , J. A. Zhang , R. F. Rogers , Z. Zhang , and V. Tallapragada , 2018: Azimuthal distribution of deep convection, environmental factors, and tropical cyclone rapid intensification: A perspective from HWRF ensemble forecasts of Hurricane Edouard (2014). J. Atmos. Sci., 75, 275295, https://doi.org/10.1175/JAS-D-17-0171.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leighton, H. , R. Black , X. Zhang , F. D. Marks , and S. G. Gopalakrishnan , 2020: Ice particle size distributions from composites of microphysics observations collected in tropical cyclones. Geophys. Res. Lett., 47, e2020GL088762, https://doi.org/10.1029/2020GL088762.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lu, X. , X. Wang , M. Tong , and V. Tallapragada , 2017: GSI-based, continuously cycled, dual-resolution hybrid ensemble–variational data assimilation System for HWRF: System description and experiments with Edouard (2014). Mon. Wea. Rev., 145, 48774898, https://doi.org/10.1175/MWR-D-17-0068.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magnusson, L. , and Coauthors, 2019: ECMWF activities for improved hurricane forecasts. Bull. Amer. Meteor. Soc., 100, 445458, https://doi.org/10.1175/BAMS-D-18-0044.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marks, F. , and Coauthors, 2019: Hurricane forecast improvement program five-year plan: 2019-2024. Proposed framework for addressing Section 104 of the Weather Research Forecasting Innovation Act of 2017. National Oceanic and Atmospheric Administration Strategic Plan, 83 pp., www.hfip.org/documents/HFIP_Strategic_Plan_20190625.pdf.

    • Search Google Scholar
    • Export Citation
  • Martinez, J. , M. M. Bell , J. L. Vigh , and R. F. Rogers , 2017: Examining tropical cyclone structure and intensification with the FLIGHT+ dataset from 1999 to 2012. Mon. Wea. Rev., 145, 44014421, https://doi.org/10.1175/MWR-D-17-0011.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Martinez, J. , M. M. Bell , R. F. Rogers , and J. D. Doyle , 2019: Axisymmetric potential vorticity evolution of Hurricane Patricia (2015). J. Atmos. Sci., 76, 20432063, https://doi.org/10.1175/JAS-D-18-0373.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ming, J. , and J. A. Zhang , 2016: Effects of surface flux parameterization on the numerically simulated intensity and structure of Typhoon Morakot (2009). Adv. Atmos. Sci., 33, 5872, https://doi.org/10.1007/s00376-015-4202-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J. , J. Frank , and D. Vollaro , 2013: Convective bursts, downdraft cooling, and boundary layer recovery in a sheared tropical storm. Mon. Wea. Rev., 141, 10481060, https://doi.org/10.1175/MWR-D-12-00135.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molinari, J. , J. A. Zhang , R. F. Rogers , and D. Vollaro , 2019: Repeated eyewall replacement cycles in Hurricane Frances (2004). Mon. Wea. Rev., 147, 20092022, https://doi.org/10.1175/MWR-D-18-0345.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T. , J. A. Zhang , and R. K. Smith , 2014: An analysis of the observed low-level structure of rapidly intensifying and mature Hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., 140, 21322146, https://doi.org/10.1002/qj.2283.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • NCEI, 2020: Billion-dollar weather and climate disasters: Overview. NOAA, www.ncdc.noaa.gov/billions/.

  • Nguyen, L. T. , R. F. Rogers , and P. D. Reasor , 2017: Thermodynamic and kinematic influences on precipitation symmetry in sheared tropical cyclones: Bertha and Cristobal (2014). Mon. Wea. Rev., 145, 44234446, https://doi.org/10.1175/MWR-D-17-0073.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, L. T. , R. F. Rogers , J. A. Zawislak , and J. A. Zhang , 2019: Assessing the influence of convective downdrafts and surface enthalpy fluxes on tropical cyclone intensity change in moderate vertical wind shear. Mon. Wea. Rev., 147, 35193534, https://doi.org/10.1175/MWR-D-18-0461.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pasch, R. J. , A. B. Penny , and R. Berg , 2019: National Hurricane Center tropical cyclone report: Hurricane Maria (AL152017). National Hurricane Center Rep., 48 pp., www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf.

    • Search Google Scholar
    • Export Citation
  • Pasch, R. J. , R. Berg , D. P. Roberts , and P. P. Papin , 2021: National Hurricane Center tropical cyclone report: Hurricane Laura (AL132020). National Hurricane Center Rep., 75 pp., www.nhc.noaa.gov/data/tcr/AL132020_Laura.pdf.

    • Search Google Scholar
    • Export Citation
  • PopStefanija, I. , C. W. Fairall , and E. J. Walsh , 2021: Mapping of directional ocean wave spectra in hurricanes and other environments. IEEE Trans. Geosci. Remote Sens., 59, 90079020, https://doi.org/10.1109/TGRS.2020.3042904.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pu, Z. , S. Zhang , M. Tong , and V. Tallapragada , 2016: Influence of the self-consistent regional ensemble background error covariance on hurricane inner-core data assimilation with the GSI-based hybrid system for HWRF. J. Atmos. Sci., 73, 49114925, https://doi.org/10.1175/JAS-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2000: Loss of life in the United States associated with recent Atlantic tropical cyclones. Bull. Amer. Meteor. Soc., 81, 20652073, https://doi.org/10.1175/1520-0477(2000)081<2065:LOLITU>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D. , M. D. Eastin , and J. F. Gamache , 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603631, https://doi.org/10.1175/2008MWR2487.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reasor, P. D. , R. F. Rogers , and S. Lorsolo , 2013: Environmental flow impacts on tropical cyclone structure diagnosed from airborne Doppler radar composites. Mon. Wea. Rev., 141, 29492969, https://doi.org/10.1175/MWR-D-12-00334.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rios-Berrios, R. , C. A. Davis , and R. D. Torn , 2018: A hypothesis for the intensification of tropical cyclones under moderate vertical wind shear. J. Atmos. Sci., 75, 41494173, https://doi.org/10.1175/JAS-D-18-0070.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F. , and Coauthors, 2006: The Intensity Forecasting Experiment (IFEX): A NOAA multiyear field program for improving tropical cyclone intensity forecasts. Bull. Amer. Meteor. Soc., 87, 15231537, https://doi.org/10.1175/BAMS-87-11-1523.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F. , and Coauthors, 2013a: NOAA’s Hurricane Intensity Forecasting Experiment: A progress report. Bull. Amer. Meteor. Soc., 94, 859882, https://doi.org/10.1175/BAMS-D-12-00089.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F. , P. D. Reasor , and S. Lorsolo , 2013b: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 29702991, https://doi.org/10.1175/MWR-D-12-00357.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F. , P. D. Reasor , and J. Zhang , 2015: Multiscale structure and evolution of Hurricane Earl (2010) during rapid intensification. Mon. Wea. Rev., 143, 536562, https://doi.org/10.1175/MWR-D-14-00175.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F. , J. Zhang , J. Zawislak , H. Jiang , G. R. Alvey , III , E. J. Zipser , and S. N. Stevenson , 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 33553376, https://doi.org/10.1175/MWR-D-16-0017.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F. , and Coauthors, 2017: Rewriting the tropical record books: The extraordinary intensification of Hurricane Patricia (2015). Bull. Amer. Meteor. Soc., 98, 20912112, https://doi.org/10.1175/BAMS-D-16-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F. , C. S. Velden , J. A. Zawislak , and J. A. Zhang , 2019: Tropical cyclones and hurricanes: Observations. Reference Module in Earth Systems and Environmental Sciences, Elsevier. 25 pp.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rogers, R. F. , P. D. Reasor , J. A. Zawislak , and L. T. Nguyen , 2020: Precipitation processes and vortex alignment during the intensification of a weak tropical cyclone in moderate vertical shear. Mon. Wea. Rev., 148, 18991929, https://doi.org/10.1175/MWR-D-19-0315.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ryan, K. , L. Bucci , J. Delgado , R. Atlas , and S. Murillo , 2018: Impact of Gulfstream-IV dropsondes on tropical cyclone prediction in a regional OSSE system. Mon. Wea. Rev., 147, 29612977, https://doi.org/10.1175/MWR-D-18-0157.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sellwood, K. J. , J. A. Sippel , and A. Aksoy , 2020: Optimizing dropsonde levels for data assimilation. 20th Symp. on Meteorological Observation and Instrumentation, Boston, MA, Amer. Meteor. Soc., 5.6, https://ams.confex.com/ams/2020Annual/meetingapp.cgi/Paper/365847.

  • Shay, L. K. , G. J. Goni , and P. G. Black , 2000: Effects of a warm oceanic feature on Hurricane Opal. Mon. Wea. Rev., 128, 13661383, https://doi.org/10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, R. K. , J. A. Zhang , and M. T. Montgomery , 2017: The dynamics of intensification in an HWRF simulation of Hurricane Earl (2010). Quart. J. Roy. Meteor. Soc., 143, 297308, https://doi.org/10.1002/qj.2922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steward, J. L. , A. Aksoy , and Z. S. Haddad , 2017: Parallel direct solution of the ensemble square root Kalman filter equations with observation principal components. J. Atmos. Oceanic Technol., 34, 18671884, https://doi.org/10.1175/JTECH-D-16-0140.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Steward, J. L. , J. E. Roman , A. L. Daviña , and A. Aksoy , 2018: Parallel direct solution of the covariance-localized ensemble square root Kalman filter equations with matrix functions. Mon. Wea. Rev., 146, 28192836, https://doi.org/10.1175/MWR-D-18-0022.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, S. R., 2017: National Hurricane Center tropical cyclone report: Hurricane Matthew (AL142016). National Hurricane Center Rep., 96 pp., www.nhc.noaa.gov/data/tcr/AL142016_Matthew.pdf.

    • Search Google Scholar
    • Export Citation
  • Stewart, S. R. , and R. Berg , 2019: National Hurricane Center tropical cyclone report: Hurricane Florence (AL062018). National Hurricane Center Rep., 98 pp., www.nhc.noaa.gov/data/tcr/AL062018_Florence.pdf.

    • Search Google Scholar
    • Export Citation
  • Sumwalt, R. L., III, C. A. Hart , E. F. Weener , and T. B. Dinh-Zahr , 2017: Safety recommendation report: Tropical cyclone information for mariners. National Transportation Safety Board Tech. Rep. MSR-17/02, 21 pp., www.ntsb.gov/investigations/AccidentReports/Reports/MSR1702.pdf.

    • Search Google Scholar
    • Export Citation
  • Susca-Lopata, G. , J. Zawislak , E. J. Zipser , and R. F. Rogers , 2015: The role of observed environmental conditions and precipitation evolution in the rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 143, 22072223, https://doi.org/10.1175/MWR-D-14-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Taylor, A. , and B. Glahn , 2008: Probabilistic guidance for hurricane storm surge. 19th Conf. on Probability and Statistics, New Orleans, LA, Amer. Meteor. Soc., 7.4., https://ams.confex.com/ams/pdfpapers/132793.pdf.

    • Search Google Scholar
    • Export Citation
  • Tong, M. , V. Tallapragada , E. Liu , B. Zhang , W. Wang , C. Kieu , and S. Liu , 2014: Assimilation of aircraft reconnaissance observations with HWRF hybrid data assimilation system. 31st Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc., 14D.4, https://ams.confex.com/ams/31Hurr/webprogram/Paper245188.html.

  • Tong, M. , and Coauthors, 2018: Impact of assimilating aircraft reconnaissance observations on tropical cyclone initialization and prediction using operational HWRF and GSI ensemble-variational hybrid data assimilation. Mon. Wea. Rev., 146, 41554177, https://doi.org/10.1175/MWR-D-17-0380.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wadler, J. B. , R. F. Rogers , and P. D. Reasor , 2018a: The relationship between spatial variations in the structure of convective bursts and tropical cyclone intensification as determined by airborne Doppler radar. Mon. Wea. Rev., 146, 761780, https://doi.org/10.1175/MWR-D-17-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wadler, J. B. , J. A. Zhang , B. Jaimes , and L. K. Shay , 2018b: Downdrafts and the evolution of boundary layer thermodynamics in Hurricane Earl (2010) before and during rapid intensification. Mon. Wea. Rev., 46, 35453565, https://doi.org/10.1175/MWR-D-18-0090.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wadler, J. B. , J. A. Zhang , R. F. Rogers , B. Jaimes , and L. K. Shay , 2020: The rapid intensification of Hurricane Michael (2018): Storm structure and the relationship to environmental and air–sea interactions. Mon. Wea. Rev., 149, 245267, https://doi.org/10.1175/MWR-D-20-0145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang, W. , J. A. Sippel , S. Abarca , L. Zhu , B. Liu , Z. Zhang , A. Mehra , and V. Tallapragada , 2018: Improving NCEP HWRF simulations of surface wind and inflow angle in the eyewall area. Wea. Forecasting, 33, 887898, https://doi.org/10.1175/WAF-D-17-0115.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, Y. , and F. Zhang , 2012: Assimilating airborne Doppler radar observations with an ensemble Kalman filter for convection-permitting hurricane initialization and prediction: Katrina (2005). Mon. Wea. Rev., 140, 841859, https://doi.org/10.1175/2011MWR3602.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weng, Y. , and F. Zhang , 2016: Advances in convection-permitting tropical cyclone analysis and prediction through EnKF assimilation of reconnaissance aircraft observations. J. Meteor. Soc. Japan, 94, 345358, https://doi.org/10.2151/jmsj.2016-018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wick, G. A. , and Coauthors, 2020: NOAA’s Sensing Hazards with Operational Unmanned Technology (SHOUT) experiment observations and forecast impacts. Bull. Amer. Meteor. Soc., 101, E968E097, https://doi.org/10.1175/BAMS-D-18-0257.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Winterbottom, H. , J. A. Sippel , A. Mehra , B. Zhang , and Z. Zhang , 2018: Recent and planned upgrades to operational HWRF data assimilation. 33rd Conf. on Hurricanes and Tropical Meteorology, Ponte Vedra Beach, FL, Amer. Meteor. Soc., 3C.5, https://ams.confex.com/ams/33HURRICANE/webprogram/Paper338953.html.

    • Search Google Scholar
    • Export Citation
  • Zawislak, J. , H. Jiang , G. R. Alvey , III , E. J. Zipser , R. F. Rogers , J. A. Zhang , and S. N. Stevenson , 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part I: Relationship between the thermodynamic structure and precipitation. Mon. Wea. Rev., 144, 33333354, https://doi.org/10.1175/MWR-D-16-0018.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zelinsky, D. A., 2019: National Hurricane Center tropical cyclone report: Hurricane Lorenzo (AL132019). National Hurricane Center Rep., 22 pp., www.nhc.noaa.gov/data/tcr/AL132019_Lorenzo.pdf.

    • Search Google Scholar
    • Export Citation
  • Zhang, B. , J. A. Sippel , B. Liu , M. Tong , Z. Zhang , V. Tallapragada , and A. Mehra , 2018: Impact of assimilating aircraft reconnaissance observations in operational HWRF on improving hurricane forecast for the 2017 Atlantic high-impact storms. 33rd Conf. on Hurricanes and Tropical Meteorology, Ponte Vedra Beach, FL, Amer. Meteor. Soc., 6A.3. https://ams.confex.com/ams/33HURRICANE/webprogram/Paper340147.html.

    • Search Google Scholar
    • Export Citation
  • Zhang, F. , and D. Tao , 2013: Effects of vertical wind shear on the predictability of tropical cyclones. J. Atmos. Sci., 70, 975983, https://doi.org/10.1175/JAS-D-12-0133.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, F. , Y. Weng , J. F. Gamache , and F. D. Marks , 2011: Performance of convection-permitting hurricane initialization and prediction during 2008–2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett., 38, L15810, https://doi.org/10.1029/2011GL048469.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A. , and M. T. Montgomery , 2012: Observational estimates of the horizontal eddy diffusivity and mixing length in the low-level region of intense hurricanes. J. Atmos. Sci., 69, 13061316, https://doi.org/10.1175/JAS-D-11-0180.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A. , and F. D. Marks , 2015: Effects of horizontal diffusion on tropical cyclone intensity change and structure in idealized three-dimensional numerical simulations. Mon. Wea. Rev., 143, 39813995, https://doi.org/10.1175/MWR-D-14-00341.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A. , and R. F. Rogers , 2019: Effects of parameterized boundary layer structure on hurricane rapid intensification in shear. Mon. Wea. Rev., 147, 853871, https://doi.org/10.1175/MWR-D-18-0010.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A. , S. G. Gopalakrishnan , F. D. Marks , R. F. Rogers , and V. Tallapragada , 2012: A developmental framework for improving hurricane model physical parameterizations using aircraft observations. Trop. Cyclone Res. Rev., 1, 419429, https://doi.org/10.6057/2012TCRR04.01.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A. , R. F. Rogers , P. Reasor , E. Uhlhorn , and F. D. Marks Jr., 2013: Asymmetric hurricane boundary layer structure from dropsonde composites in relation to the environmental wind shear. Mon. Wea. Rev., 141, 39683984, https://doi.org/10.1175/MWR-D-12-00335.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A. , D. S. Nolan , R. F. Rogers , and V. Tallapragada , 2015: Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF. Mon. Wea. Rev., 143, 31363155, https://doi.org/10.1175/MWR-D-14-00339.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A. , J. J. Cione , E. A. Kalina , E. W. Uhlhorn , T. Hock , and J. A. Smith , 2017a: Observations of infrared sea surface temperature and air–sea interaction in Hurricane Edouard (2014) using GPS dropsondes. J. Atmos. Oceanic Technol., 34, 13331349, https://doi.org/10.1175/JTECH-D-16-0211.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A. , R. F. Rogers , and V. Tallapragada , 2017b: Impact of parameterized boundary layer structure on tropical cyclone rapid intensification forecasts in HWRF. Mon. Wea. Rev., 145, 14131426, https://doi.org/10.1175/MWR-D-16-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A. , F. D. Marks , J. A. Sippel , R. F. Rogers , X. Zhang , S. G. Gopalakrishnan , Z. Zhang , and V. Tallapragada , 2018a: Evaluating the impact of improvement in the horizontal diffusion parameterization on hurricane prediction in the operational Hurricane Weather Research and Forecast (HWRF) Model. Wea. Forecasting, 33, 317329, https://doi.org/10.1175/WAF-D-17-0097.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. A. , R. Atlas , G. D. Emmitt , L. Bucci , and K. Ryan , 2018b: Airborne Doppler wind lidar observations of the tropical cyclone boundary layer. Remote Sens., 10, 825, https://doi.org/10.3390/rs10060825.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, X. , S. G. Gopalakrishnan , S. Trahan , T. S. Quirino , Q. Liu , Z. Zhang , G. J. Alaka , and V. Tallapragada , 2016: Representing multiple scales in the Hurricane Weather Research and Forecasting modeling system: Design of multiple sets of movable multilevel nesting and the basin-scale HWRF forecast application. Wea. Forecasting, 31, 20192034, https://doi.org/10.1175/WAF-D-16-0087.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z. , and Coauthors, 2020: The impact of stochastic physics-based hybrid GSI/EnKF data assimilation on hurricane forecasts using EMC operational hurricane modeling system. Atmosphere, 11, 801, https://doi.org/10.3390/atmos11080801.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 9 4 0
Full Text Views 1209 522 65
PDF Downloads 1042 505 49

Accomplishments of NOAA’s Airborne Hurricane Field Program and a Broader Future Approach to Forecast Improvement

View More View Less
  • 1 National Oceanographic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida;
  • | 2 National Oceanographic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida;
  • | 3 National Oceanographic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida;
  • | 4 National Oceanographic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida;
  • | 5 National Oceanographic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida;
  • | 6 National Oceanographic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida;
  • | 7 National Oceanographic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida;
  • | 8 National Oceanographic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida;
  • | 9 National Oceanographic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, and Northern Gulf Institute, Florida State University, Tallahassee, Florida
  • | 10 National Oceanographic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida;
  • | 11 National Oceanographic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida;
  • | 12 National Oceanographic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida;
  • | 13 National Oceanographic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida;
  • | 14 National Oceanographic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, Miami, Florida;
  • | 15 National Oceanographic and Atmospheric Administration/Atlantic Oceanographic and Meteorological Laboratory/Hurricane Research Division, and Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida;
Restricted access

Abstract

Since 2005, NOAA has conducted the annual Intensity Forecasting Experiment (IFEX), led by scientists from the Hurricane Research Division at NOAA’s Atlantic Oceanographic and Meteorological Laboratory. They partner with NOAA’s Aircraft Operations Center, who maintain and operate the WP-3D and Gulfstream IV-SP (G-IV) Hurricane Hunter aircraft, and NCEP’s National Hurricane Center and Environmental Modeling Center, who task airborne missions to gather data used by forecasters for analysis and forecasting and for ingest into operational numerical weather prediction models. The goal of IFEX is to improve tropical cyclone (TC) forecasts using an integrated approach of analyzing observations from aircraft, initializing and evaluating forecast models with those observations, and developing new airborne instrumentation and observing strategies targeted at filling observing gaps and maximizing the data’s impact in model forecasts. This summary article not only highlights recent IFEX contributions toward improved TC understanding and prediction, but also reflects more broadly on the accomplishments of the program during the 16 years of its existence. It describes how IFEX addresses high-priority forecast challenges, summarizes recent collaborations, describes advancements in observing systems monitoring structure and intensity, as well as in assimilation of aircraft data into operational models, and emphasizes key advances in understanding of TC processes, particularly those that lead to rapid intensification. The article concludes by laying the foundation for the next generation of IFEX as it broadens its scope to all TC hazards, particularly rainfall, storm-surge inundation, and tornadoes, that have gained notoriety during the last few years after several devastating landfalling TCs.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jonathan Zawislak, jonathan.zawislak@noaa.gov

Abstract

Since 2005, NOAA has conducted the annual Intensity Forecasting Experiment (IFEX), led by scientists from the Hurricane Research Division at NOAA’s Atlantic Oceanographic and Meteorological Laboratory. They partner with NOAA’s Aircraft Operations Center, who maintain and operate the WP-3D and Gulfstream IV-SP (G-IV) Hurricane Hunter aircraft, and NCEP’s National Hurricane Center and Environmental Modeling Center, who task airborne missions to gather data used by forecasters for analysis and forecasting and for ingest into operational numerical weather prediction models. The goal of IFEX is to improve tropical cyclone (TC) forecasts using an integrated approach of analyzing observations from aircraft, initializing and evaluating forecast models with those observations, and developing new airborne instrumentation and observing strategies targeted at filling observing gaps and maximizing the data’s impact in model forecasts. This summary article not only highlights recent IFEX contributions toward improved TC understanding and prediction, but also reflects more broadly on the accomplishments of the program during the 16 years of its existence. It describes how IFEX addresses high-priority forecast challenges, summarizes recent collaborations, describes advancements in observing systems monitoring structure and intensity, as well as in assimilation of aircraft data into operational models, and emphasizes key advances in understanding of TC processes, particularly those that lead to rapid intensification. The article concludes by laying the foundation for the next generation of IFEX as it broadens its scope to all TC hazards, particularly rainfall, storm-surge inundation, and tornadoes, that have gained notoriety during the last few years after several devastating landfalling TCs.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Jonathan Zawislak, jonathan.zawislak@noaa.gov
Save