Thunder Hours: How Old Methods Offer New Insights into Thunderstorm Climatology

Elizabeth A. DiGangi Earth Networks, Germantown, Maryland

Search for other papers by Elizabeth A. DiGangi in
Current site
Google Scholar
PubMed
Close
,
Michael Stock Earth Networks, Germantown, Maryland

Search for other papers by Michael Stock in
Current site
Google Scholar
PubMed
Close
, and
Jeff Lapierre Earth Networks, Germantown, Maryland

Search for other papers by Jeff Lapierre in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Lightning data are often used to measure the location and intensity of thunderstorms. This study presents 5 years of data from the Earth Networks Global Lightning Detection Network (ENGLN) in the form of thunder hours. A thunder hour is defined as an hour during which thunder can be heard from a given location, and thunder hours can be calculated for the entire globe. Thunder hours are an intuitive measure of thunderstorm frequency where the 1-h interval corresponds to the life-span of most thunderstorms, and the hourly temporal resolution of the data also represents long-lived systems well. Flash-density-observing systems are incredibly useful, but they have some drawbacks that limit how they can be used to quantify global thunderstorm activity on a climatological scale: flash density distributions derived from satellite observations must sacrifice a great deal of their spatial resolution in order to capture the diurnal convective cycle, and the detection efficiencies of ground-based lightning detection systems are not uniform in space or constant in time. Examining convective patterns in the context of thunder hours lends insight into thunderstorm activity without being heavily influenced by network performance, making thunder hours particularly useful for studying thunderstorm climatology. The ENGLN thunder hour dataset offers powerful utility to climatological studies involving lightning and thunderstorms. This study first shows that the ENGLN thunder hours dataset is very consistent with past measurements of global thunderstorm activity and the global electric circuit using only 5 years of data. Then, this study showcases thunder anomaly fields, designed to be analogous to temperature anomalies, which can be used to diagnose changes in thunderstorm frequency relative to the long-term mean in both time and space.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elizabeth A. DiGangi, edigangi@earthnetworks.com

Abstract

Lightning data are often used to measure the location and intensity of thunderstorms. This study presents 5 years of data from the Earth Networks Global Lightning Detection Network (ENGLN) in the form of thunder hours. A thunder hour is defined as an hour during which thunder can be heard from a given location, and thunder hours can be calculated for the entire globe. Thunder hours are an intuitive measure of thunderstorm frequency where the 1-h interval corresponds to the life-span of most thunderstorms, and the hourly temporal resolution of the data also represents long-lived systems well. Flash-density-observing systems are incredibly useful, but they have some drawbacks that limit how they can be used to quantify global thunderstorm activity on a climatological scale: flash density distributions derived from satellite observations must sacrifice a great deal of their spatial resolution in order to capture the diurnal convective cycle, and the detection efficiencies of ground-based lightning detection systems are not uniform in space or constant in time. Examining convective patterns in the context of thunder hours lends insight into thunderstorm activity without being heavily influenced by network performance, making thunder hours particularly useful for studying thunderstorm climatology. The ENGLN thunder hour dataset offers powerful utility to climatological studies involving lightning and thunderstorms. This study first shows that the ENGLN thunder hours dataset is very consistent with past measurements of global thunderstorm activity and the global electric circuit using only 5 years of data. Then, this study showcases thunder anomaly fields, designed to be analogous to temperature anomalies, which can be used to diagnose changes in thunderstorm frequency relative to the long-term mean in both time and space.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Elizabeth A. DiGangi, edigangi@earthnetworks.com

Supplementary Materials

    • Supplemental Materials (ZIP 163 MB)
Save
  • Adams, D. K. , and A. C. Comrie , 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972214, https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Aich, V. , R. H. Holzworth , S. J. Goodman , Y. Kuleshov , C. G. Price , and E. R. Williams , 2018: Lightning: A new essential climate variable. Eos, 99, https://doi.org/10.1029/2018EO104583.

    • Search Google Scholar
    • Export Citation
  • Albrecht, R. I. , S. J. Goodman , W. A. Petersen , D. E. Buechler , E. C. Bruning , and R. J. Blakeslee , 2011: The 13 years of TRMM Lightning Imaging Sensor: From individual flash characteristics to decadal tendencies. 14th Int. Conf. on Atmospheric Electricity, Rio de Janeiro, Brazil, ICAE, 14, https://ntrs.nasa.gov/citations/20110015779.

  • Albrecht, R. I. , D. E. Buechler , R. J. Blakeslee , and H. J. Christian , 2016: Where are the lightning hotspots on Earth? Bull. Amer. Meteor. Soc., 97, 20512068, https://doi.org/10.1175/BAMS-D-14-00193.1.

    • Search Google Scholar
    • Export Citation
  • Anselmo, E. M. , L. A. T. Machado , C. Schumacher , and G. N. Kiladis , 2021: Amazonian mesoscale convective systems: Life cycle and propagation characteristics. Int. J. Climatol., 41, 39683981, https://doi.org/10.1002/joc.7053.

    • Search Google Scholar
    • Export Citation
  • Becker, E. , 2019: May 2019 El Niño Update: Feliz Cumpleaños. Climate.gov, www.climate.gov/news-features/blogs/enso/may-2019-el-ni%C3%B1o-update-feliz-cumplea%C3%B1os.

  • Bitzer, P. M. , and J. C. Burchfield , 2016: Bayesian techniques to analyze and merge lightning locating system data. Geophys. Res. Lett., 43, 605612, https://doi.org/10.1002/2016GL071951.

    • Search Google Scholar
    • Export Citation
  • Bourscheidt, V. , K. L. Cummins , O. Pinto , and K. P. Naccarato , 2012: Methods to overcome lightning location system performance limitations on spatial and temporal analysis: Brazilian case. J. Atmos. Oceanic Technol., 29, 13041311, https://doi.org/10.1175/JTECH-D-11-00213.1.

    • Search Google Scholar
    • Export Citation
  • Brooks, C. E. P. , 1925: The Distribution of Thunderstorms Over the Globe. H.M. Stationery Office, 164 pp.

  • Burleyson, C. D. , Z. Feng , S. M. Hagos , J. Fast , L. A. T. Machado , and S. T. Martin , 2016: Spatial variability of the background diurnal cycle of deep convection around the GoAmazon2014/5 field campaign sites. J. Appl. Meteor. Climatol., 55, 15791598, https://doi.org/10.1175/JAMC-D-15-0229.1.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J. , 2001: LIS/OTD 0.5 degree High Resolution Full Climatology (HRFC). NASA Global Hydrology Resource Center DAAC, accessed 4 June 2021, https://ghrc.nsstc.nasa.gov/lightning/data/data_lis_otd-climatology.html.

  • Cecil, D. J. , D. E. Buechler , and R. J. Blakeslee , 2014: Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res., 135–136, 404414, https://doi.org/10.1016/j.atmosres.2012.06.028.

    • Search Google Scholar
    • Export Citation
  • Cecil , 2015: TRMM LIS climatology of thunderstorm occurrence and conditional lightning flash rates. J. Climate, 28, 65366547, https://doi.org/10.1175/JCLI-D-15-0124.1.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Jr., 1985: Secular variations in thunder-day frequencies in the twentieth century. J. Geophys. Res., 90, 61816194, https://doi.org/10.1029/JD090iD04p06181.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Jr., 1988: Climatography of thunder events in the conterminous United States. Part I: Temporal aspects. J. Climate, 1, 389398, https://doi.org/10.1175/1520-0442(1988)001<0389:COTEIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., Jr., and D. Changnon , 2001: Long-term fluctuations in thunderstorm activity in the United States. Climatic Change, 50, 489503, https://doi.org/10.1023/A:1010651512934.

    • Search Google Scholar
    • Export Citation
  • Christian, H. J. , and Coauthors, 2003: Global frequency and distribution of lightning as observed from space by the Optical Transient Detector. J. Geophys. Res., 108, 4005, https://doi.org/10.1029/2002JD002347.

    • Search Google Scholar
    • Export Citation
  • Cohen, J. C. P. , M. A. F. Silva Dias , and C. A. Nobre , 1995: Environmental conditions associated with Amazonian squall lines: A case study. Mon. Wea. Rev., 123, 31633174, https://doi.org/10.1175/1520-0493(1995)123<3163:ECAWAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fujibe, F. , 2017: Long-term change in lightning mortality and its relation to annual thunder days in Japan. J. Nat. Disaster Sci., 38, 1729, https://doi.org/10.2328/jnds.38.17.

    • Search Google Scholar
    • Export Citation
  • Geerts, B. , and Coauthors, 2017: The 2015 plains elevated convection at night field project. Bull. Amer. Meteor. Soc., 98, 767786, https://doi.org/10.1175/BAMS-D-15-00257.1.

    • Search Google Scholar
    • Export Citation
  • Hall, N. M. J. , and P. Peyrillé , 2006: Dynamics of the West African monsoon. J. Phys. IV France, 139, 8199, https://doi.org/10.1051/jp4:2006139007.

    • Search Google Scholar
    • Export Citation
  • Harrison, R. G. , 2013: The Carnegie curve. Surv. Geophys., 34, 209232, https://doi.org/10.1007/s10712-012-9210-2.

  • Holle, R. L. , 2014: Diurnal variations of NLDN-reported cloud-to-ground lightning in the United States. Mon. Wea. Rev., 142, 10371052, https://doi.org/10.1175/MWR-D-13-00121.1.

    • Search Google Scholar
    • Export Citation
  • Holle, R. L. , and M. J. Murphy , 2015: Lightning in the North American monsoon: An exploratory climatology. Mon. Wea. Rev., 143, 19701977, https://doi.org/10.1175/MWR-D-14-00363.1.

    • Search Google Scholar
    • Export Citation
  • Huffines, G. R. , and R. E. Orville , 1999: Lightning ground flash density and thunderstorm duration in the continental United States: 1989–96. J. Appl. Meteor., 38 10131019, https://doi.org/10.1175/1520-0450(1999)038<1013:LGFDAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hutchins, M. L. , R. H. Holzworth , J. B. Brundell , and C. J. Rodger , 2012: Relative detection efficiency of the World Wide Lightning Location Network. Radio Sci., 47, RS6005, https://doi.org/10.1029/2012RS005049.

    • Search Google Scholar
    • Export Citation
  • Jayaratne, E. R. , and V. Ramachandran , 1998: A five-year study of lightning activity using a CGR3 flash counter in Gaborone, Botswana. Meteor. Atmos. Phys., 66, 235241, https://doi.org/10.1007/BF01026636.

    • Search Google Scholar
    • Export Citation
  • Johnson, N. , 2019: August 2019 El Niño Update: Stick a fork in it. Climate.gov, www.climate.gov/news-features/blogs/enso/august-2019-el-ni%C3%B1o-update-stick-fork-it.

  • Kitagawa, N. , 1989: Long-term variations in thunder-day frequencies in Japan. J. Geophys. Res., 94, 1318313189, https://doi.org/10.1029/JD094iD11p13183.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R. , and W. R. Cotton , 1987: Internal structure of a small mesoscale convective system. Mon. Wea. Rev., 115, 629645, https://doi.org/10.1175/1520-0493(1987)115<0629:ISOASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kotroni, V. , and K. Lagouvardos , 2016: Lightning in the Mediterranean and its relation with sea-surface temperature. Environ. Res. Lett., 11, 34006, https://doi.org/10.1088/1748-9326/11/3/034006.

    • Search Google Scholar
    • Export Citation
  • Lapierre, J. , M. Stock , and E. A. DiGangi , 2021: Lightning detection network performance for thunderstorms. 10th Conf. on the Meteorological Application of Lightning Data, Online, Amer. Meteor. Soc., 6.3, https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/383844.

  • Lavigne, T. , C. Liu , and N. Liu , 2019: How does the trend in thunder days relate to the variation of lightning flash density? J. Geophys. Res. Atmos., 124, 49554974, https://doi.org/10.1029/2018JD029920.

    • Search Google Scholar
    • Export Citation
  • Lindsey, R. , 2016: Global impacts of El Niño and La Niña. Climate.gov, www.climate.gov/news-features/featured-images/global-impacts-el-ni%C3%B1o-and-la-ni%C3%B1a.

  • Marchand, M. , K. Hilburn , and S. D. Miller , 2019: Geostationary Lightning Mapper and Earth Networks lightning detection over the contiguous United States and dependence on flash characteristics. J. Geophys. Res. Atmos., 124, 1155211556, https://doi.org/10.1029/2019JD031039.

    • Search Google Scholar
    • Export Citation
  • National Centers for Environmental Information, 2019a: National climate report for June 2019. NCEI, www.ncdc.noaa.gov/sotc/national/201906.

  • National Centers for Environmental Information, 2019b: Global climate report for January 2019. NCEI, www.ncdc.noaa.gov/sotc/global/201901.

    • Search Google Scholar
    • Export Citation
  • National Centers for Environmental Information, 2019c: Global climate report for February 2019. NCEI, www.ncdc.noaa.gov/sotc/global/201902.

    • Search Google Scholar
    • Export Citation
  • National Centers for Environmental Information, 2019d: Global climate report for August 2019. NCEI, www.ncdc.noaa.gov/sotc/global/201908.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J. , E. N. Anagnostou , and R. F. Adler , 2000: A 10-yr climatology of Amazonian rainfall derived from passive microwave satellite observations. J. Appl. Meteor., 39, 4256, https://doi.org/10.1175/1520-0450(2000)039<0042:AYCOAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J. , T. L. Bell , and L. Xu , 2002: Sampling of the diurnal cycle of precipitation using TRMM. J. Atmos. Oceanic Technol., 19, 13331344, https://doi.org/10.1175/1520-0426(2002)019<1333:SOTDCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • NOAA/NWS Weather Forecast Office, 2019a: Severe thunderstorms from June 4, 2019. National Weather Service, www.weather.gov/arx/jun0419.

    • Search Google Scholar
    • Export Citation
  • NOAA/NWS Weather Forecast Office, 2019b: Monsoon 2019 review for the Southwest US. National Weather Service, www.weather.gov/psr/SouthwestMonsoon2019Review.

    • Search Google Scholar
    • Export Citation
  • Peterson, M. , 2019: Research applications for the geostationary lightning mapper operational lightning flash data product. J. Geophys. Res. Atmos., 124, 1020510231, https://doi.org/10.1029/2019JD031054.

    • Search Google Scholar
    • Export Citation
  • Peterson, M. , D. Mach , and D. Buechler , 2021: A global LIS/OTD climatology of lightning flash extent density. J. Geophys. Res. Atmos., 126, e2020JD033885, https://doi.org/10.1029/2020JD033885.

    • Search Google Scholar
    • Export Citation
  • Pinto, O., Jr., 2015: Thunderstorm climatology of Brazil: ENSO and tropical Atlantic connections. Int. J. Climatol., 35, 871878, https://doi.org/10.1002/joc.4022.

    • Search Google Scholar
    • Export Citation
  • Pinto, O., I. R. C. A. Pinto , and M. A. S. Ferro , 2013: A study of the long-term variability of thunderstorm days in southeast Brazil. J. Geophys. Res. Atmos., 118, 52315246, https://doi.org/10.1002/jgrd.50282.

    • Search Google Scholar
    • Export Citation
  • Price, C. G. , 2013: Lightning applications in weather and climate research. Surv. Geophys., 34, 755767, https://doi.org/10.1007/s10712-012-9218-7.

    • Search Google Scholar
    • Export Citation
  • Ramos, A. , L. Alves , J. Marengo , R. Luiz , and F. Diniz , 2020: Annual Climate Report of Brazil -2019 Year 02 -Number 02, 2020. Tech. Rep., 10 pp., https://doi.org/10.13140/RG.2.2.24189.38885.

    • Search Google Scholar
    • Export Citation
  • Rehbein, A. , T. Ambrizzi , and C. R. Mechoso , 2018: Mesoscale convective systems over the Amazon basin. Part I: Climatological aspects. Int. J. Climatol., 38, 215229, https://doi.org/10.1002/joc.5171.

    • Search Google Scholar
    • Export Citation
  • Rodger, C. J. , S. Werner , J. Brundell , E. Lay , N. Thomson , R. Holzworth , and R. Dowden , 2006: Detection efficiency of the VLF World-Wide Lightning Location Network (WWLLN): Initial case study. Ann. Geophys., 24, 31973214, https://doi.org/10.5194/angeo-24-3197-2006.

    • Search Google Scholar
    • Export Citation
  • Rodger, C. J. , J. B. Brundell , R. H. Holzworth , E. D. Douma , and S. Heckman , 2017: The World Wide Lightning Location Network (WWLLN): Update on new dataset and improved detection efficiencies. 32nd URSI General Assembly and Scientific Symp., Montreal, QC, Canada, URSI, EFGH28-1, www.ursi.org/proceedings/procGA17/papers/Paper_EFGH28-1(1349).pdf.

    • Search Google Scholar
    • Export Citation
  • Romatschke, U. , and R. A. Houze , 2010: Extreme summer convection in South America. J. Climate, 23, 37613791, https://doi.org/10.1175/2010JCLI3465.1.

    • Search Google Scholar
    • Export Citation
  • Schneider, T. , T. Bischoff , and G. H. Haug , 2014: Migrations and dynamics of the intertropical convergence zone. Nature, 513, 4553, https://doi.org/10.1038/nature13636.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A. , and J. P. McCreary Jr., 2001: The monsoon circulation of the Indian Ocean. Prog. Oceanogr., 51, 1123, https://doi.org/10.1016/S0079-6611(01)00083-0.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S. , and S. J. Goodman , 2020: Prolific lightning and thunderstorm initiation over the Lake Victoria Basin in East Africa. Mon. Wea. Rev., 148, 19711985, https://doi.org/10.1175/MWR-D-19-0260.1.

    • Search Google Scholar
    • Export Citation
  • Virts, K. S. , J. M. Wallace , M. L. Hutchins , and R. H. Holzworth , 2015: Diurnal and seasonal lightning variability over the Gulf Stream and the Gulf of Mexico. J. Atmos. Sci., 72, 26572665, https://doi.org/10.1175/JAS-D-14-0233.1.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E. , and C. Gautier , 1993: A satellite-derived climatology of the ITCZ. J. Climate, 6, 21622174, https://doi.org/10.1175/1520-0442(1993)006<2162:ASDCOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E. , and X. Jiang , 2015: Tropical meteorology and climate—Intertropical convergence zone. Encyclopedia of Atmospheric Sciences , 2nd ed. G. R. North , J. Pyle , and F. Zhang , Eds., Academic Press, 121131, https://doi.org/10.1016/B978-0-12-382225-3.00417-5

    • Search Google Scholar
    • Export Citation
  • Whipple, F. J. W. , 1929: Potential gradient and atmospheric pollution: The influence of “summer time.” Quart. J. Roy. Meteor. Soc., 55, 351362, https://doi.org/10.1002/qj.49705523206.

    • Search Google Scholar
    • Export Citation
  • Whipple, F. J. W. , and F. J. Scrase , 1936: Point discharge in the electric field of the Earth, an analysis of continuous records obtained at Kew Observatory. H.M. Stationery Office, 20 pp.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 1953: World distribution of thunderstorm days. Part 1: Tables. WMO/OMM-21, 204 pp., https://library.wmo.int/doc_num.php?explnum_id=8020.

  • Zhang, D. , and K. L. Cummins , 2020: Time evolution of satellite-based optical properties in lightning flashes, and its impact on GLM flash detection. J. Geophys. Res. Atmos., 125, e2019JD032024, https://doi.org/10.1029/2019JD032024

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 21 0 0
Full Text Views 4271 1608 88
PDF Downloads 3198 860 52