• Aarons, S. M. , S. M. Aciego , and J. D. Gleason , 2013: Variable Hf–Sr–Nd radiogenic isotopic compositions in a Saharan dust storm over the Atlantic: Implications for dust flux to oceans, ice sheets and the terrestrial biosphere. Chem. Geol., 349–350, 1826, https://doi.org/10.1016/j.chemgeo.2013.04.010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aarons, S. M. , M. A. Blakowski , S. M. Aciego , E. I. Stevenson , K. W. W. Sims , S. R. Scott , and C. Aarons , 2017: Geochemical characterization of critical dust source regions in the American West. Geochim. Cosmochim. Acta, 215, 141161, https://doi.org/10.1016/j.gca.2017.07.024.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Abouchami, W. , and Coauthors, 2013: Geochemical and isotopic characterization of the Bodélé Depression dust source and implications for transatlantic dust transport to the Amazon basin. Earth Planet. Sci. Lett., 380, 112123, https://doi.org/10.1016/j.epsl.2013.08.028.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Aciego, S. M. , and Coauthors, 2017: Dust outpaces bedrock in nutrient supply to montane forest ecosystems. Nat. Commun., 8, 14800, https://doi.org/10.1038/ncomms14800.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baddock, M. C. , J. E. Bullard , and R. G. Bryant , 2009: Dust source identification using MODIS: A comparison of techniques applied to the Lake Eyre basin, Australia. Remote Sens. Environ., 113, 15111528, https://doi.org/10.1016/j.rse.2009.03.002.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollhöfer, A. , and K. J. R. Rosman , 2000: Isotopic source signatures for atmospheric lead: The Southern Hemisphere. Geochim. Cosmochim. Acta, 64, 32513262, https://doi.org/10.1016/S0016-7037(00)00436-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bollhöfer, A. , and K. J. R. Rosman , 2001: Isotopic source signatures for atmospheric lead: The Northern Hemisphere. Geochim. Cosmochim. Acta, 65, 17271740, https://doi.org/10.1016/S0016-7037(00)00630-X.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bory, A. J.-M. , W. Abouchami , S. J. G. Galer , A. Svensson , J. N. Christensen , and P. E. Biscaye , 2014: A Chinese imprint in insoluble pollutants recently deposited in central Greenland as indicated by lead isotopes. Environ. Sci. Technol., 48, 14511457, https://doi.org/10.1021/es4035655.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boyle, E. A. , and Coauthors, 2014: Anthropogenic lead emissions in the ocean: The evolving global experiment. Oceanography, 27 ( 1), 6975, https://doi.org/10.5670/oceanog.2014.10.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Callender, E. , and P. C. Van Metre , 1997: Reservoir sediment cores show U.S. lead declines. Environ. Sci. Technol., 31, 424A428A, https://doi.org/10.1021/es972473k.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Chiapello, I. , G. Bergametti , B. Gomes , and B. Chatenet , 1995: An additional low layer transport of Sahelian and Saharan dust over the north-eastern tropical Atlantic. Geophys. Res. Lett., 22, 31913194, https://doi.org/10.1029/95GL03313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Conway, T. M. , D. S. Hamilton , R. U. Shelley , A. M. Aguilar-Islas , W. M. Landing , N. M. Mahowald , and S. G. John , 2019: Tracing and constraining anthropogenic aerosol iron fluxes to the North Atlantic Ocean using iron isotopes. Nat. Commun., 10, 2628, https://doi.org/10.1038/s41467-019-10457-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Duce, R. A. , C. K. Unni , B. J. Ray , J. M. Prospero , and J. T. Merrill , 1980: Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific: Temporal variability. Science, 209, 15221524, https://doi.org/10.1126/science.209.4464.1522.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eisenreich, S. J. , N. A. Metzer , and N. R. Urban , 1986: Response of atmospheric lead to decreased use of lead in gasoline. Environ. Sci. Technol., 20, 171174, https://doi.org/10.1021/es00144a010.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Erel, Y. , and J. Torrent , 2010: Contribution of Saharan dust to Mediterranean soils assessed by sequential extraction and Pb and Sr isotopes. Chem. Geol., 275, 1925, https://doi.org/10.1016/j.chemgeo.2010.04.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Escobar, J. , T. J. Witmore , G. D. Kamenov , and M. A. Riedinger-Whitmore , 2013: ­Isotope record of anthropogenic lead pollution in lake sediments of Florida, USA. J. Paleolimnol., 49, 237252, https://doi.org/10.1007/s10933-012-9671-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ewing, S. A. , J. S. Christensen , S. T. Brown , R. A. VanCuren , S. S. Cliff , and D. J. ­DePaolo , 2010: Pb isotopes as an indicator of the Asian contribution to particulate air pollution in urban California. Environ. Sci. Technol., 44, 89118916, https://doi.org/10.1021/es101450t.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ganor, E. , and Y. Mamane , 1982: Transport of Saharan dust across the eastern Mediterranean. Atmos. Environ., 16, 581587, https://doi.org/10.1016/0004-6981(82)90167-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Goudie, A. S. , 1983: Dust storms in space and time. Prog. Phys. Geogr., 7, 502530, https://doi.org/10.1177/030913338300700402.

  • Goudie, A. S. , and N. J. Middleton , 2001: Saharan dust storms: Nature and consequences. Earth-Sci. Rev., 56, 179204, https://doi.org/10.1016/S0012-8252(01)00067-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graney, J. R. , and M. S. Landis , 2013: Coupling meteorology, metal concentrations, and Pb isotopes for source attribution in archived precipitation samples. Sci. Total Environ., 448, 141150, https://doi.org/10.1016/j.scitotenv.2012.07.031.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Graney, J. R. , A. N. Halliday , G. J. Keeler , J. O. Nriagu , J. A. Robbins , an d S. A. Norton , 1995: Isotopic record of lead pollution in lake sediments from the northeastern United States. Geochim. Cosmochim. Acta, 59, 17151728, https://doi.org/10.1016/0016-7037(95)00077-D.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Grousset, F. E. , and P. E. Biscaye , 2005: Tracing dust sources and transport patterns using Sr, Nd, and Pb isotopes. Chem. Geol., 222, 149167, https://doi.org/10.1016/j.chemgeo.2005.05.006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hamelin, B. , F. E. Grousset , P. E. Biscaye , and A. Zindler , 1989: Lead isotopes in trade wind aerosols at Barbados: The influence of European emissions over the North Atlantic. J. Geophys. Res., 94, 16 24316 250, https://doi.org/10.1029/JC094iC11p16243.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hart, S. R. , 1984: A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309, 753757, https://doi.org/10.1038/309753a0.

  • Kamenov, G. D. , M. Brenner , and J. L. Tucker , 2009: Anthropogenic versus natural control on trace element and Sr–Nd–Pb isotope stratigraphy in peat sediments of southeast Florida (USA), ∼1500 AD to present. Geochim. Cosmochim. Acta, 73, 35493567, https://doi.org/10.1016/j.gca.2009.03.017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kelly, A. E. , M. K. Reuer , N. F. Goodkin , and E. A. Boyle , 2009: Lead concentrations and isotopes in corals and water near Bermuda, 1780–2000. Earth Planet. Sci. Lett., 283, 93100, https://doi.org/10.1016/j.epsl.2009.03.045.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A. , W. Abouchami , S. J. G. Galer , V. H. Garrison , E. Williams , and M. O. Andreae , 2014: A radiogenic isotope tracer study of transatlantic dust transport from Africa to the Caribbean. Atmos. Environ., 82, 130143, https://doi.org/10.1016/j.atmosenv.2013.10.021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kumar, A. , W. Abouchami , S. J. G. Galer , S. P. Singh , K. W. Fomba , J. M. Prospero , and M. O. Andreae , 2018: Seasonal radiogenic isotopic variability of the African dust outflow to the tropical Atlantic Ocean and across to the Caribbean. Earth Planet. Sci. Lett., 487, 94105, https://doi.org/10.1016/j.epsl.2018.01.025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Muhs, D. R. , C. A. Bush , K. C. Stewarts , T. R. Rowland , and R. C. Crittenden , 1990: Geochemical evidence of Saharan dust parent material for soils developed on quaternary limestones of Caribbean and western Atlantic islands. Quat. Res., 33, 157177, https://doi.org/10.1016/0033-5894(90)90016-E.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Perry, K. D. , T. A. Cahill , R. A. Eldred , and D. Dutcher , 1997: Long-range transport of North African dust to the eastern United States. J. Geophys. Res., 102, 11 22511 238, https://doi.org/10.1029/97JD00260.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petit, J.-R. , M. Briat , and A. Royer , 1981: Ice Age aerosol content from East Antarctic ice core samples and past wind strength. Nature, 293, 391394, https://doi.org/10.1038/293391a0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prospero, J. M. , and T. N. Carlson , 1972: Vertical and areal distribution of Saharan dust over the western equatorial North Atlantic Ocean. J. Geophys. Res., 77, 52555265, https://doi.org/10.1029/JC077i027p05255.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rayegani, B. , S. Barati , H. Goshtasb , S. Gachpaz , J. Ramezani , and H. Sarkheil , 2020: Sand and dust storm sources identification: A remote sensing approach. Ecol. Indic., 112, 106099, https://doi.org/10.1016/j.ecolind.2020.106099.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sassen, K. , 2002: Indirect climate forcing over the western US from Asian dust storms. Geophys. Res. Lett., 29, 1465, https://doi.org/10.1029/2001GL014051.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schütz, L. , and M. Sebert , 1987: Mineral aerosols and source identification. J. Aerosol Sci., 18, 110, https://doi.org/10.1016/0021-8502(87)90002-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Scott, S. R. , and Coauthors, 2019: The application of abundance sensitivity filters to the precise and accurate measurement of uranium series nuclides by plasma mass spectrometry. Int. J. Mass Spectrom., 435, 321332, https://doi.org/10.1016/j.ijms.2018.11.011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Settle, D. M. , C. C. Patterson , K. K. Turekian , and J. K. Cochran , 1982: Lead precipitation fluxes at tropical ocean sites determined from 210Pb measurements. J. Geophys. Res., 87, 12391245, https://doi.org/10.1029/JC087iC02p01239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sherman, L. S. , J. D. Blum , J. T. Dvonch , L. E. Gratz , and M. S. Landis , 2015: The use of Pb, Sr, and Hg isotopes in Great Lakes precipitation as a tool for pollution source attribution. Sci. Total Environ., 502, 362374, https://doi.org/10.1016/j.scitotenv.2014.09.034.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shirahata, H. , R. W. Elias , C. C. Patterson , and M. Koide , 1980: Chronological variations in concentrations and isotopic compositions of anthropogenic atmospheric lead in sediments of a remote subalpine pond. Geochim. Cosmochim. Acta, 44, 149162, https://doi.org/10.1016/0016-7037(80)90127-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simonetti, A. , C. Gariépy , and J. Carignan , 2000a: Pb and Sr isotopic compositions of snowpack from Québec, Canada: Inferences on the sources and deposition budgets of atmospheric heavy metals. Geochim. Cosmochim. Acta, 64, 520, https://doi.org/10.1016/S0016-7037(99)00207-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Simonetti, A. , C. Gariépy , and J. Carignan , 2000b: Pb and Sr isotopic evidence for sources of atmospheric heavy metals and their deposition budgets in northeastern North America. Geochim. Cosmochim. Acta, 64, 34393452, https://doi.org/10.1016/S0016-7037(00)00446-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strelow, F. W. E. , and F. V. S. Toerien , 1966: Separation of lead(II), from bismuth(III), thallium(III), cadmium(II), mercury(II), gold(III), platinium(IV), palladium(II), and other elements by anion exchange chromatography. Anal. Chem., 38, 545548, https://doi.org/10.1021/ac60236a006.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Swap, R. , M. Garstang , and S. Greco , 1992: Saharan dust in the Amazon basin. Tellus, 44B, 133149, https://doi.org/10.3402/tellusb.v44i2.15434.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tegen, I. , M. Werner , S. P. Harrison , and K. E. Kohfeld , 2004: Relative importance of climate and land use in determining present and future global soil dust emission. Geophys. Res. Lett., 31, L05105, https://doi.org/10.1029/2003GL019216.

    • Search Google Scholar
    • Export Citation
  • Thirlwall, M. F. , 2002: Multicollector ICP-MS analysis of Pb isotopes using a 207pb-204pb double spike demonstrates up to 400 ppm/amu systematic errors in Tl-normalization. Chem. Geol., 184, 255279, https://doi.org/10.1016/S0009-2541(01)00365-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torfstein, A. , and Coauthors, 2017: Chemical characterization of atmospheric dust from a weekly time series in the north Red Sea between 2006 and 2010. Geochim. Cosmochim. Acta, 211, 373393, https://doi.org/10.1016/j.gca.2017.06.007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Washington, R. , M. Todd , N. J. Middleton , and A. S. Goudie , 2003: Dust-storm source areas determined by the total ozone monitoring spectrometer and surface observations. Ann. Assoc. Amer. Geogr., 93, 297313, https://doi.org/10.1111/1467-8306.9302003.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wetherbee, G. A. , D. A. Gay , T. M. Debey , C. M. B. Lehmann , and M. A. Nilles , 2012: Wet deposition of fission-product isotopes to North America from the Fukushima Dai-ichi incident, March 2011. Environ. Sci. Technol., 46, 25742582, https://doi.org/10.1021/es203217u.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Yu, H. , and Coauthors, 2015: The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations. Geophys. Res. Lett., 42, 19841991, https://doi.org/10.1002/2015GL063040.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zurbrick, C. M. , and Coauthors, 2018: Dissolved Pb and Pb isotopes in the North Atlantic from the GEOVIDE transect (GEOTRACES GA-01) and their decadal evolution. Biogeosciences, 15, 49955014, https://doi.org/10.5194/bg-15-4995-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 3 3 0
Full Text Views 665 411 19
PDF Downloads 505 284 17

Lead Isotopes in North American Precipitation Record the Presence of Saharan Dust

View More View Less
  • 1 Wisconsin State Laboratory of Hygiene, University of Wisconsin–Madison, Madison, Wisconsin;
  • | 2 Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and Hurricane Research Division, NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida;
  • | 3 National Atmospheric Deposition Program, Wisconsin State Laboratory of Hygiene, University of Wisconsin–Madison, Madison, Wisconsin
Restricted access

Abstract

Atmospheric dust is an important mass transfer and nutrient supply process in Earth surface ecosystems. For decades, Saharan dust has been hypothesized as a supplier of nutrients to the Amazon rainforest and eastern North America. However, isotope studies aimed at detecting Saharan dust in the American sedimentary record have been ambiguous. A large Saharan dust storm emerged off the coast of Africa in June 2020 and extended into the southeastern United States. This storm provided a means to evaluate the influence of Saharan dust in North America confirmed by independent satellite and ground observations. Precipitation samples from 17 sites within the National Atmospheric Deposition Program (NADP) were obtained from throughout the southeastern United States prior to, during, and after the arrival of Saharan dust. Precipitation samples were measured for their lead (Pb) isotopic composition, total Pb content, and 210Pb activity using multicollector inductively coupled plasma mass spectrometry. We measured a significant isotopic shift (approximately 0.7% in the 208Pb/206Pb relative to the 207Pb/206Pb) in precipitation that peaked in late June 2020 when the dust blanketed the southeastern United States. However, the magnitude and short time period of the isotopic shift would make it difficult to detect in sedimentary records.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sean R. Scott, srscott4@wisc.edu

Abstract

Atmospheric dust is an important mass transfer and nutrient supply process in Earth surface ecosystems. For decades, Saharan dust has been hypothesized as a supplier of nutrients to the Amazon rainforest and eastern North America. However, isotope studies aimed at detecting Saharan dust in the American sedimentary record have been ambiguous. A large Saharan dust storm emerged off the coast of Africa in June 2020 and extended into the southeastern United States. This storm provided a means to evaluate the influence of Saharan dust in North America confirmed by independent satellite and ground observations. Precipitation samples from 17 sites within the National Atmospheric Deposition Program (NADP) were obtained from throughout the southeastern United States prior to, during, and after the arrival of Saharan dust. Precipitation samples were measured for their lead (Pb) isotopic composition, total Pb content, and 210Pb activity using multicollector inductively coupled plasma mass spectrometry. We measured a significant isotopic shift (approximately 0.7% in the 208Pb/206Pb relative to the 207Pb/206Pb) in precipitation that peaked in late June 2020 when the dust blanketed the southeastern United States. However, the magnitude and short time period of the isotopic shift would make it difficult to detect in sedimentary records.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Sean R. Scott, srscott4@wisc.edu

Supplementary Materials

    • Supplemental Materials (XLSX 51 KB)
Save