• Aon-Benfield Reinsurance Company, 2021: Weather, climate and catastrophe insight: 2020 annual report. Aon-Benfield Reinsurance Company Rep., 81 pp., https://www.aon.com/global-weather-catastrophe-natural-disasters-costs-climate-change-2020-annual-report/index.html?utm_source=email&utm_medium=clients&utm_campaign=natcat21.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A. , and B. N. Meisner , 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115, 5174, https://doi.org/10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Arsenault, K. R. , and Coauthors, 2020: The NASA hydrological forecast system for food and water security applications. Bull. Amer. Meteor. Soc., 101, E1007E1025, https://doi.org/10.1175/BAMS-D-18-0264.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E. , and Coauthors, 2017: Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Hydrol. Earth Syst. Sci., 21, 62016217, https://doi.org/10.5194/hess-21-6201-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Becker, A. , P. Finger, A. Meyer-Christoffer, B. Rudolf, K. Schamm, U. Schneider, and M. Ziese , 2013: A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data, 5, 7199, https://doi.org/10.5194/essd-5-71-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Contractor, S. , and Coauthors, 2020: Rainfall Estimates on a Gridded Network (REGEN)—A global land-based gridded dataset of daily precipitation from 1950 to 2016. Hydrol. Earth Syst. Sci., 24, 919943, https://doi.org/10.5194/hess-24-919-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dinku, T. , C. Funk, P. Peterson, R. Maidment, T. Tadesse, H. Gadain, and P. Ceccato , 2018: Validation of the CHIRPS satellite rainfall estimates over eastern of Africa. Quart. J. Roy. Meteor. Soc., 144, 292312, https://doi.org/10.1002/qj.3244.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C. , 2021: Drought, Flood, Fire: How Climate Change Contributes to Recent Catastrophes. Cambridge University Press, 332 pp.

  • Funk, C. , and S. Shukla , 2020: Drought Early Warning and Forecasting: Theory and Practice. Elsevier, 238 pp.

  • Funk, C. , A. Verdin, J. Michaelsen, P. Peterson, D. Pedreros, and G. Husak , 2015a: A global satellite assisted precipitation climatology. Earth Syst. Sci. Data, 7, 275287, https://doi.org/10.5194/essd-7-275-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C. , and Coauthors, 2015b: The Climate Hazards Infrared Precipitation with Stations—A new environmental record for monitoring extremes. Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Funk, C. , and Coauthors, 2019: Recognizing the Famine Early Warning Systems Network: Over 30 years of drought early warning science advances and partnerships promoting global food security. Bull. Amer. Meteor. Soc., 100, 10111027, https://doi.org/10.1175/BAMS-D-17-0233.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harris, I. , T. J. Osborn, P. Jones, and D. Lister , 2020: Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-0453-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hong, Y. , K.-L. Hsu, S. Sorooshian, and X. Gao , 2004: Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J. Appl. Meteor., 43, 18341853, https://doi.org/10.1175/JAM2173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hou, A. Y. , and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, https://doi.org/10.1175/BAMS-D-13-00164.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsu, K. , X. Gao, S. Sorooshian, and H. V. Gupta , 1997: Precipitation estimation from remotely sensed information using artificial neural networks. J. Appl. Meteor., 36, 11761190, https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J. , and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520, https://doi.org/10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J. , and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J. , and Coauthors, 2018: NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG), version 5.2. National Aeronautics and Space Administration Algorithm Theoretical Basis Doc., 35 pp.

  • Huffman, G. J. , and Coauthors, 2020: Integrated Multi-Satellite Retrievals for the Global Precipitation Measurement (GPM) mission (IMERG). Satellite Precipitation Measurement, V. Levizzani et al., Eds., Advances in Global Change Research. Springer Nature., 67, 343354, https://doi.org/10.1007/978-3-030-24568-9_19

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Isaaks, E. H. , and R. M. Srivastava , 1989: An Introduction to Applied Geostatistics. Oxford University Press, 561 pp.

  • Janowiak, J. E. , R. J. Joyce, and Y. Yarosh , 2001: A real-time global half-hourly pixel-resolution infrared dataset and its applications. Bull. Amer. Meteor. Soc., 82, 205217, https://doi.org/10.1175/1520-0477(2001)082<0205:ARTGHH>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Journel, A. G. , and C. Huijbregts , 1978: Mining Geostatistics. Academic Press, 600 pp.

  • Joyce, R. J. , and P. Xie , 2011: Kalman filter–based CMORPH. J. Hydrometeor., 12, 15471563, https://doi.org/10.1175/JHM-D-11-022.1.

  • Kidd, C. , A. Becker, G. J. Huffman, C. L. Muller, P. Joe, G. Skofronick-Jackson, and D. B. Kirschbaum , 2017: So, how much of the Earth’s surface is covered by rain gauges? Bull. Amer. Meteor. Soc., 98, 6978, https://doi.org/10.1175/BAMS-D-14-00283.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kirschbaum, D. B. , 2020: GPM applications overview. NASA GPM Annual Meeting, Virtual, NASA.

  • Kirschbaum, D. B. , and Coauthors, 2017: NASA’s remotely sensed precipitation: A reservoir for applications users. Bull. Amer. Meteor. Soc., 98, 11691184, https://doi.org/10.1175/BAMS-D-15-00296.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R. , and Coauthors, 2011: Globally gridded satellite observations for climate studies. Bull. Amer. Meteor. Soc., 92, 893907, https://doi.org/10.1175/2011BAMS3039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kozu, T. , 2001: Development of Precipitation Radar onboard the Tropical Rainfall Measuring Mission satellite. IEEE Geosci. Remote Sens. Lett., 39, 102116, https://doi.org/10.1109/36.898669.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. , W. S. Olson, and L. Giglio , 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232, https://doi.org/10.1109/36.536538.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. , W. Barnes, T. Kozu, J. Shiue, and J. Simpson , 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, https://doi.org/10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. , and Coauthors, 2000: The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteor., 39, 1965– 1982, https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. , and Coauthors, 2001: The evolution of the Goddard profiling algorithm (GPROF) for rainfall estimation from passive microwave sensors. J. Appl. Meteor., 40, 18011820, https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kummerow, C. , D. L. Randel, M. Kulie, N.-Y. Wang, R. Ferraro, S. Joseph Munchak, and V. Petkovic , 2015: The evolution of the Goddard profiling algorithm to a fully parametric scheme. J. Atmos. Oceanic Technol., 32, 22652280, https://doi.org/10.1175/JTECH-D-15-0039.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Magadzire, T. , G. Galu, and J. Verdin , 2017: How climate forecasts strengthen food security. WMO Bull., 66 ( 2), https://public.wmo.int/en/resources/bulletin/how-climate-forecasts-strengthen-food-security.

    • Search Google Scholar
    • Export Citation
  • McNally, A. , and Coauthors, 2017: A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data, 4, 170012, https://doi.org/10.1038/sdata.2017.12.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nguyen, P. , M. Bador, L. Alexander, T. Lane, and C. Funk , 2020: On the robustness of annual daily precipitation maxima estimates over monsoon Asia. Front. Climate, 2, 578785, https://doi.org/10.3389/fclim.2020.578785.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Roca, R. , and Coauthors, 2019: FROGS: A daily 1° × 1° gridded precipitation database of rain gauge, satellite and reanalysis products. Earth Syst. Sci. Data, 11, 10171035, https://doi.org/10.5194/essd-11-1017-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ross, K. , M. E. Brown, J. P. Verdin, and L. Underwood , 2009: Review of FEWS NET biophysical monitoring requirements. Environ. Res. Lett., 4, 024009, https://doi.org/10.1088/1748-9326/4/2/024009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ruane, A. C. , and Coauthors, 2021: Strong regional influence of climatic forcing datasets on global crop model ensembles. Agric. For. Meteor., 300, 108313, https://doi.org/10.1016/j.agrformet.2020.108313.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U. , A. Becker, P. Finger, A. Meyer-Christoffer, M. Ziese, and B. Rudolf , 2013: GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor. Appl. Climatol., 115, 1540, https://doi.org/10.1007/s00704-013-0860-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Schneider, U. , P. Finger, A. Meyer-Christoffer, E. Rustemeier, M. Ziese, and A. Becker , 2017: Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere, 8, 52, https://doi.org/10.3390/atmos8030052.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Senay, G. B. , and J. Verdin , 2003: Characterization of yield reduction in Ethiopia using a GIS-based crop water balance model. Can. J. Remote Sens., 29, 687692, https://doi.org/10.5589/m03-039.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Shukla, S. S. , and Coauthors, 2021: Multistage and scale drought prediction to support food insecurity early warning (invited presentation). 101st Annual Meeting, Virtual, Amer. Meteor. Soc., 1B.5, https://ams.confex.com/ams/101ANNUAL/prelim.cgi/Paper/379647.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G. , and Coauthors, 2017: The Global Precipitation Measurement (GPM) mission for science and society. Bull. Amer. Meteor. Soc., 98, 16791695, https://doi.org/10.1175/BAMS-D-15-00306.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Turk, F. J. , E. E. Ebert, H.-J. Oh, B.-J. Sohn, V. Levizzani, E. A. Smith, and R. Ferraro , 2003: Validation of an operational global precipitation analysis at short time scales. 12th Conf. on Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc., JP1.2, https://ams.confex.com/ams/annual2003/techprogram/paper_56865.htm.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J. , S. Miller, and C. Castello , 2010: A dynamic global cloud layer for virtual globes. Int. J. Remote Sens., 31, 18971914, https://doi.org/10.1080/01431160902926657.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • UN Food Security Information Network, 2021: Global report on food crises 2021. UN FSIN Rep., 307 pp., https://www.fsinplatform.org/sites/default/files/resources/files/GRFC%202021%20050521%20med.pdf.

  • Verdin, J. , and R. Klaver , 2002: Grid-cell-based crop water accounting for the Famine Early Warning System. Hydrol. Processes, 16, 16171630, https://doi.org/10.1002/hyp.1025.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verdin, J. , C. Funk, R. Klaver, and D. Roberts , 1999: Exploring the correlation between southern Africa NDVI and Pacific sea surface temperatures: Results for the 1998 maize growing season. Int. J. Remote Sens., 20, 21172124, https://doi.org/10.1080/014311699212380.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verdin, J. , C. Funk, G. Senay, and R. Choularton , 2005: Climate science and famine early warning. Philos. Trans. Roy. Soc. London, 360B, 21552168, https://doi.org/10.1098/rstb.2005.1754.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J. , and K. Matsuura , 1995: Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteor., 34, 25772586, https://doi.org/10.1175/1520-0450(1995)034<2577:SIOAAA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J. , and S. M. Robeson , 1995: Climatologically aided interpolation (CAI) of terrestrial air temperature. Int. J. Climatol., 15, 221229, https://doi.org/10.1002/joc.3370150207.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Willmott, C. J. , S. G. Ackleson, R. E. Davis, J. J. Feddema, K. M. Klink, D. R. Legates, J. O’Donnell, and C. M. Rowe , 1985: Statistics for the evaluation and comparison of models. J. Geophys. Res., 90, 89959005, https://doi.org/10.1029/JC090IC05P08995.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xie, P. , and P. A. Arkin , 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Amer. Meteor. Soc., 78, 25392558, https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 14 9 0
Full Text Views 1468 1051 69
PDF Downloads 1168 852 84

Introducing and Evaluating the Climate Hazards Center IMERG with Stations (CHIMES): Timely Station-Enhanced Integrated Multisatellite Retrievals for Global Precipitation Measurement

View More View Less
  • 1 Climate Hazards Center, University of California, Santa Barbara, Santa Barbara, California;
  • | 2 NASA Goddard Space Flight Center, Greenbelt, Maryland;
  • | 3 Climate Hazards Center, University of California, Santa Barbara, Santa Barbara, California;
  • | 4 NASA Goddard Space Flight Center, Greenbelt, Maryland;
  • | 5 Climate Hazards Center, University of California, Santa Barbara, Santa Barbara, California;
  • | 6 U.S. Geological Survey, Baltimore, Maryland;
  • | 7 NASA Goddard Institute for Space Studies, New York, New York;
  • | 8 NASA Goddard Institute for Space Studies, and Center for Climate Systems Research, Earth Institute, Columbia University, New York, New York
  • | 9 Climate Hazards Center, University of California, Santa Barbara, Santa Barbara, California;
Restricted access

Abstract

As human exposure to hydroclimatic extremes increase and the number of in situ precipitation observations declines, precipitation estimates, such as those provided by the Integrated Multisatellite Retrievals for Global Precipitation Measurement (GPM) (IMERG) mission, provide a critical source of information. Here, we present a new gauge-enhanced dataset [the Climate Hazards Center IMERG with Stations (CHIMES)] designed to support global crop and hydrologic modeling and monitoring. CHIMES enhances the IMERG Late Run product using an updated Climate Hazards Center (CHC) high-resolution climatology (CHPclim) and low-latency rain gauge observations. CHPclim differs from other products because it incorporates long-term averages of satellite precipitation, which increases CHPclim’s fidelity in data-sparse areas with complex terrain. This fidelity translates into performance increases in unbiased IMERGlate data, which we refer to as CHIME. This is augmented with gauge observations to produce CHIMES. The CHC’s curated rain gauge archive contains valuable contributions from many countries. There are two versions of CHIMES: preliminary and final. The final product has more copious and better-curated station data. Every pentad and month, bias-adjusted IMERGlate fields are combined with gauge observations to create pentadal and monthly CHIMESprelim and CHIMESfinal. Comparisons with pentadal, high-quality gridded station data show that IMERGlate performs well (r = 0.75), but has some systematic biases which can be reduced. Monthly cross-validation results indicate that unbiasing increases the variance explained from 50% to 63% and decreases the mean absolute error from 48 to 39 mm month−1. Gauge enhancement then increases the variance explained to 75%, reducing the mean absolute error to 27 mm month−1.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chris Funk, chrisfunk@ucsb.edu

Abstract

As human exposure to hydroclimatic extremes increase and the number of in situ precipitation observations declines, precipitation estimates, such as those provided by the Integrated Multisatellite Retrievals for Global Precipitation Measurement (GPM) (IMERG) mission, provide a critical source of information. Here, we present a new gauge-enhanced dataset [the Climate Hazards Center IMERG with Stations (CHIMES)] designed to support global crop and hydrologic modeling and monitoring. CHIMES enhances the IMERG Late Run product using an updated Climate Hazards Center (CHC) high-resolution climatology (CHPclim) and low-latency rain gauge observations. CHPclim differs from other products because it incorporates long-term averages of satellite precipitation, which increases CHPclim’s fidelity in data-sparse areas with complex terrain. This fidelity translates into performance increases in unbiased IMERGlate data, which we refer to as CHIME. This is augmented with gauge observations to produce CHIMES. The CHC’s curated rain gauge archive contains valuable contributions from many countries. There are two versions of CHIMES: preliminary and final. The final product has more copious and better-curated station data. Every pentad and month, bias-adjusted IMERGlate fields are combined with gauge observations to create pentadal and monthly CHIMESprelim and CHIMESfinal. Comparisons with pentadal, high-quality gridded station data show that IMERGlate performs well (r = 0.75), but has some systematic biases which can be reduced. Monthly cross-validation results indicate that unbiasing increases the variance explained from 50% to 63% and decreases the mean absolute error from 48 to 39 mm month−1. Gauge enhancement then increases the variance explained to 75%, reducing the mean absolute error to 27 mm month−1.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chris Funk, chrisfunk@ucsb.edu
Save