• Ansmann, A. , M. Riebesell , U. Wandinger , C. Weitkamp , E. Voss , W. Lahmann , and W. Michaelis, 1992: Combined Raman elastic-backscatter lidar for vertical profiling of moisture, aerosol extinction, backscatter, and lidar ratio. Appl. Phys., 55B, 1828, https://doi.org/10.1007/BF00348608.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Azouzoute, A. , A. A. Merrouni , E. G. Bennouga , and A. Gennioui, 2019: Accuracy measurement of pyranometer vs reference cell for PV resource assessment. Energy Procedia, 157, 12021209, https://doi.org/10.1016/j.egypro.2018.11.286.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baklanov, A. A. , and R. B. Nuterman, 2009: Multi-scale atmospheric environment modelling for urban areas. Adv. Appl. Sci. Res., 3, 5357, https://doi.org/10.5194/asr-3-53-2009.

    • Search Google Scholar
    • Export Citation
  • Berezin, I. A. , and Coauthors, 2017: Error analysis of integrated water vapor measured by CIMEL photometer. Izv. Atmos. Oceanic Phys., 53, 5864, https://doi.org/10.1134/S0001433817010030.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bonn, B. , and Coauthors, 2018: Impact of vegetative emissions on urban ozone and biogenic secondary organic aerosol: Box model study for Berlin, Germany. J. Cleaner Prod., 176, 827841, https://doi.org/10.1016/j.jclepro.2017.12.164.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Campanelli, M. , and Coauthors, 2018: The QUATRAM Campaign: Quality and Traceabiliy of Atmospheric Aerosol Measurements. 2018 WMO/CIMO Technical Conf. on Meteorological and Environmental Instruments and Methods of Observation, Amsterdam, Netherlands, WMO/CIMO, 132.

    • Search Google Scholar
    • Export Citation
  • Campanelli, M. , and Coauthors, 2021: A wide-ranging investigation of the COVID-19 lockdown effects on the atmospheric composition in various Italian urban sites (AER–LOCUS). Urban Climate, 39, 100954, https://doi.org/10.1016/j.uclim.2021.100954.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Camuffo, D., 2010: The role of temperature and moisture. Basic environmental mechanisms affecting cultural heritage: Understanding deterioration mechanisms for conservation purposes, COST Action D42, 930.

    • Search Google Scholar
    • Export Citation
  • Casadio, S. , A. Dehn , T. Fehr , and B. R. Bojkov, 2013: The Atmospheric Composition Validation and Evolution workshop (ACVE2013)—Recommendations. Ann. Geophys., 56, 6535, https://doi.org/10.4401/ag-6535.

    • Search Google Scholar
    • Export Citation
  • Casale, G. R. , A. M. Siani , H. Diémoz , G. Agnesod , M. Pedone , and A. Colosimo, 2016: Modelli di previsione dell’indice ultravioletto (UVI). VI Convegno Nazionale, Alessandria, Italy, ARPA.

    • Search Google Scholar
    • Export Citation
  • Cattrall, C. , J. Reagan , K. Thome , and O. Dubovik, 2005: Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations. J. Geophys. Res., 110, D10S11, https://doi.org/10.1029/2004JD005124.

    • Search Google Scholar
    • Export Citation
  • Chen, F. , and Coauthors, 2011: The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol., 31, 273288, https://doi.org/10.1002/joc.2158.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciardini, V. , L. Caporaso , R. Sozzi , I. Petenko , A. Bolignano , M. Morelli , D. Melas , and S. Argentini, 2019: Interconnections of the urban heat island with the spatial and temporal micrometeorological variability in Rome. Urban Climate, 29, 100493, https://doi.org/10.1016/j.uclim.2019.100493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Crutzen, P. J., 2004: New directions: The growing urban heat and pollution “island” effect—Impact on chemistry and climate. Atmos. Environ., 38, 35393540, https://doi.org/10.1016/j.atmosenv.2004.03.032.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Bernardino, A. , and Coauthors, 2021a: On the effect of sea breeze regime on aerosol and gases properties in the urban area of Rome, Italy. Urban Climate, 37, 100842, https://doi.org/10.1016/j.uclim.2021.100842.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Bernardino, A. , and Coauthors, 2021b: Impact of synoptic meteorological conditions on air quality in three different case studies in Rome, Italy. Atmos. Pollut. Res., 12, 7688, https://doi.org/10.1016/j.apr.2021.02.019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diémoz, H. , and Coauthors, 2021: Advanced NO2 retrieval technique for the Brewer spectrophotometer applied to the 20-year record in Rome, Italy. Earth Syst. Sci. Data, 13, 49294950, https://doi.org/10.5194/essd-13-4929-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Girolamo, P. , P. F. Ambrico , A. Amodeo , A. Boselli , G. Pappalardo , and N. Spinelli, 1999: Aerosol observations by lidar in the nocturnal boundary layer. Appl. Opt., 38, 45854595, https://doi.org/10.1364/AO.38.004585.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fountoulakis, I. , H. Diémoz , A. M. Siani , A. di Sarra , D. Meloni , and D. M. Sferlazzo, 2021: Variability and trends in surface solar spectral ultraviolet irradiance in Italy: On the influence of geopotential height and lower-stratospheric ozone. Atmos. Chem. Phys., 21, 1868918705, https://doi.org/10.5194/acp-21-18689-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Freudenthaler, V. , H. Linné , A. Chaikovski , D. Rabus , and S. Groß, 2018: EARLINET lidar quality assurance tools. Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2017-395.

    • Search Google Scholar
    • Export Citation
  • Giles, D. M. , and Coauthors, 2019: Advancements in the Aerosol Robotic Network (AERONET) version 3 database—Automated near-real-time quality control algorithm with improved cloud screening for sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech., 12, 169209, https://doi.org/10.5194/amt-12-169-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gobbi, G. P. , F. Angelini , F. Barnaba , F. Costabile , J. M. Baldasano , S. Basart , R. Sozzi , and A. Bolignano, 2013: Changes in particulate matter physical properties during Saharan advections over Rome (Italy): A four-year study, 2001–2004. Atmos. Chem. Phys., 13, 73957404, https://doi.org/10.5194/acp-13-7395-2013.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hatakka, J. , and Coauthors, 2003: Overview of the atmospheric research activities and results at Pallas GAW station. Boreal Environ. Res., 8, 365384, www.borenv.net/BER/archive/pdfs/ber8/ber8-365.pdf.

    • Search Google Scholar
    • Export Citation
  • Herman, J. , R. Evans , A. Cede , N. Abuhassan , I. Petropavlovskikh , and G. McConville, 2015: Comparison of ozone retrievals from the Pandora spectrometer system and Dobson spectrophotometer in Boulder, Colorado. Atmos. Meas. Tech., 8, 34073418, https://doi.org/10.5194/amt-8-3407-2015.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huang, C. , J. Yang , N. Clinton , L. Yu , H. Huang , I. Dronova , and J. Jin, 2021: Mapping the maximum extents of urban green spaces in 1039 cities using dense satellite images. Environ. Res. Lett., 16, 064072, https://doi.org/10.1088/1748-9326/ac03dc.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J. , and Coauthors, 2015: The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Amer. Meteor. Soc., 96, 13111332, https://doi.org/10.1175/BAMS-D-12-00227.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C. , and J. E. Gaynor, 1983: The Boulder Atmospheric Observatory. J. Appl. Meteor. Climatol., 22, 863880, https://doi.org/10.1175/1520-0450(1983)022<0863:TBAO>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Karl, T. , and Coauthors, 2020: Studying urban climate and air quality in the Alps: The Innsbruck Atmospheric Observatory. Bull. Amer. Meteor. Soc., 101, E488E507, https://doi.org/10.1175/BAMS-D-19-0270.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Klett, J. D., 1985: Lidar inversion with variable backscatter/extinction ratios. Appl. Opt., 24, 16381643, https://doi.org/10.1364/AO.24.001638.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kudo, R. , and Coauthors, 2021: Optimal use of the Prede POM sky radiometer for aerosol, water vapor, and ozone retrievals. Atmos. Meas. Tech., 14, 33953426, https://doi.org/10.5194/amt-14-3395-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Madonna, F. , and Coauthors, 2011: CIAO: The CNR-IMAA advanced observatory for atmospheric research. Atmos. Meas. Tech., 4, 11911208, https://doi.org/10.5194/amt-4-1191-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mallone, S. , S. Stafoggia , A. Faustini , G. P. Gobbi , A. Marconi , and F. Forastiere, 2011: Saharan dust and associations between particulate matter and daily mortality in Rome, Italy. Environ. Health Perspect., 119, 14091414, https://doi.org/10.1289/ehp.1003026.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mastrantonio, G. , and G. Fiocco, 1982: Accuracy of wind velocity determinations with Doppler sodars. J. Appl. Meteor., 21, 823830, https://doi.org/10.1175/1520-0450(1982)021<0823:AOWVDW>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mastrantonio, G. , S. Argentini , and A. Viola, 1994: A new PC-based real time system to analyze sodar-echoes. Italian Research on Antarctic Atmosphere, M. Colacino , G. Giovanelli , and L. Stefanutti, Eds., Vol. 45, Italian Physical Society, 227235.

    • Search Google Scholar
    • Export Citation
  • Mielke, B., 2005: Analog + photon counting. Licel Tech. Note, 10 pp., http://licel.com/manuals/analogpc.pdf.

  • Müller, D. , A. Ansmann , I. Mattis , M. Tesche , U. Wandinger , D. Althausen , and G. Pisani, 2007: Aerosol‐type‐dependent lidar ratios observed with Raman lidar. J. Geophys. Res., 112, D16202, https://doi.org/10.1029/2006JD008292.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nahian, M. R. , and Coauthors, 2020: Complex meteorology over a complex mining facility: Assessment of topography, land use, and grid spacing modifications in WRF. J. Appl. Meteor. Climatol., 59, 769789, https://doi.org/10.1175/JAMC-D-19-0213.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nakajima, T. , and Coauthors, 2020: An overview of and issues with sky radiometer technology and SKYNET. Atmos. Meas. Tech., 13, 41954218, https://doi.org/10.5194/amt-13-4195-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Nicolae, D. , J. Vasilescu , E. Carstea , K. Stebel , and F. Prata, 2010: Romanian Atmospheric Research 3D Observatory: Synergy of instruments. Rom. Rep. Phys., 62, 838853, www.rrp.infim.ro/2010_62_4/art17Doina.pdf.

    • Search Google Scholar
    • Export Citation
  • Nuruzzaman, M., 2015: Urban heat island: Causes, effects and mitigation measures—A review. Int. J. Environ. Monit. Anal., 3, 6773, https://doi.org/10.11648/j.ijema.20150302.15.

    • Search Google Scholar
    • Export Citation
  • Park, M.-S. , S.-H. Park , J.-H. Chae , M.-H. Choi , Y. Song , M. Kang , and J.-W. Rohand, 2017: High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea. Atmos. Meas. Tech., 10, 15751594, https://doi.org/10.5194/amt-10-1575-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Peel, M. C. , B. L. Finlayson , and T. A. McMahon, 2007: Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11, 16331644, https://doi.org/10.5194/hess-11-1633-2007.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pelliccioni, P. , and Coauthors, 2020: Integrated evaluation of indoor particulate exposure: The VIEPI project. Sustainability, 12, 9758, https://doi.org/10.3390/su12229758.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Petenko, I. , G. Mastrantonio , A. Viola , S. Argentini , L. Coniglio , P. Monti , and G. Leuzzi, 2011: Local circulation diurnal patterns and their relationship with large-scale flows in a coastal area of the Tyrrhenian Sea. Bound.-Layer Meteor., 139, 353366, https://doi.org/10.1007/s10546-010-9577-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pichelli, E. , R. Ferretti , M. Cacciani , A. M. Siani , V. Ciardini , and T. Di Iorio, 2014: The role of urban boundary layer investigated with high-resolution models and ground-based observations in Rome area: A step towards understanding parameterization potentialities. Atmos. Meas. Tech., 7, 315332, https://doi.org/10.5194/amt-7-315-2014.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, M. P. , S. Casadio , G. Fiocco , M. Cacciani , A. Di Sarra , D. Fua , and P. Castracane, 2002: Estimation of atmospheric water vapour flux profiles in the nocturnal unstable urban boundary layer with Doppler sodar and Raman lidar. Bound.-Layer Meteor., 102, 3962, https://doi.org/10.1023/A:1012794731389.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rao, M. P. , P. Castracane , S. Casadio , D. Fua , and G. Fiocco, 2004: Observations of atmospheric solitary waves in the urban boundary layer. Bound.-Layer Meteor., 111, 85108, https://doi.org/10.1023/B:BOUN.0000010998.10262.e2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siani, A. M. , F. Frasca , F. Scarlatti , A. Religi , H. Diémoz , G. R. Casale , M. Pedone , and V. Savastiouk, 2018: Examination on total ozone column retrievals by Brewer spectrophotometry using different processing software. Atmos. Meas. Tech., 11, 51055123, https://doi.org/10.5194/amt-11-5105-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C. , and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., https://doi.org/10.5065/D68S4MVH.

    • Crossref
    • Export Citation
  • Sterzel, T. , M. K. Lüdeke , C. Walther , M. T. Kok , D. Sietz , and P. L. Lucas, 2020: Typology of coastal urban vulnerability under rapid urbanization. PLOS ONE, 15, e0220936, https://doi.org/10.1371/journal.pone.0220936.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B. , and Coauthors, 2016: The Barbados Cloud Observatory: Anchoring investigations of clouds and circulation on the edge of the ITCZ. Bull. Amer. Meteor. Soc., 97, 787801, https://doi.org/10.1175/BAMS-D-14-00247.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Struckmeier, C. , F. Drewnick , F. Fachinger , G. P. Gobbi , and S. Borrmann, 2016: Atmospheric aerosols in Rome, Italy: Sources, dynamics and spatial variations during two seasons. Atmos. Chem. Phys., 16, 15,27715,299, https://doi.org/10.5194/acp-16-15277-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sugiura, K. , and Coauthors, 2011: Supersite as a common platform for multi-observations in Alaska for a collaborative framework between JAMSTEC and IARC. JAMSTEC Rep. Res. Dev., 12, 6169, https://doi.org/10.5918/jamstecr.12.61.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Suto, H. , and Coauthors, 2021: Thermal And Near-infrared Sensor for carbon Observation Fourier Transform Spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing Satellite-2 (GOSAT-2) during its first year in orbit. Atmos. Meas. Tech., 14, 20132039, https://doi.org/10.5194/amt-14-2013-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tanaka, K. , and Coauthors, 2018: First year on-orbit calibration activities of SGLI on GCOM-C satellite. Proc. SPIE, 10781, 107810Q, https://doi.org/10.1117/12.2324703.

    • Search Google Scholar
    • Export Citation
  • United Nations, 2019: Department of economic and social affairs: Population dynamics. United Nations, https://population.un.org/wpp/.

  • Veefkind, J. P. , and Coauthors, 2012: TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ., 120, 7083, https://doi.org/10.1016/j.rse.2011.09.027.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Verhoelst, T. , and Coauthors, 2021: Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks. Atmos. Meas. Tech., 14, 481510, https://doi.org/10.5194/amt-14-481-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wolfe, D. E. , and R. J. Lataitis, 2018: Boulder Atmospheric Observatory: 1977–2016: The end of an era and lessons learned. Bull. Amer. Meteor. Soc., 99, 13451358, https://doi.org/10.1175/BAMS-D-17-0054.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Y. , and Coauthors, 2019: Six-year source apportionment of submicron organic aerosols from near-continuous highly time-resolved measurements at SIRTA (Paris area, France). Atmos. Chem. Phys., 19, 1475514776, https://doi.org/10.5194/acp-19-14755-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 21 21 0
Full Text Views 820 460 27
PDF Downloads 7651 7445 18

The Boundary Layer Air Quality-Analysis Using Network of Instruments (BAQUNIN) Supersite for Atmospheric Research and Satellite Validation over Rome Area

View More View Less
  • 1 Serco Italia SpA, Frascati, Rome, Italy;
  • | 2 Department of Physics, Sapienza University of Rome, Rome, Italy;
  • | 3 Serco Italia SpA, and EOP-GMQ, ESRIN, ESA, Frascati, Rome, Italy;
  • | 4 Institute of Atmospheric Pollution Research (IIA), National Research Council of Italy (CNR), Monterotondo, Rome, Italy;
  • | 5 Department of Physics, Sapienza University of Rome, Rome, Italy;
  • | 6 Institute of Atmospheric Sciences and Climate (ISAC), National Research Council of Italy (CNR), Rome, Italy;
  • | 7 Serco Italia SpA, and EOP-GMQ, ESRIN, ESA, Frascati, Rome, and Sardegna Clima Onlus, Fonni, Nuoro, Italy;
  • | 8 ARPA Valle d’Aosta, Saint-Christophe, Aosta, Italy;
  • | 9 Serco Italia SpA, Frascati, Rome, Italy;
  • | 10 Department of Physics, Sapienza University of Rome, Rome, Italy;
  • | 11 Serco Italia SpA, Frascati, Rome, Italy;
  • | 12 EOP-GMQ, ESRIN, ESA, Frascati, Rome, Italy
Restricted access

Abstract

The Boundary layer Air Quality-analysis Using Network of Instruments (BAQUNIN) supersite is presented. The site has been collecting pollutant concentrations and meteorological parameters since 2017. Currently, BAQUNIN consists of three observation sites located in the city center of Rome (Italy), and in the neighboring semirural and rural areas. To the best of our knowledge, BAQUNIN is one of the first observatories in the world to involve several passive and active ground-based instruments installed in multiple locations, managed by different research institutions, in a highly polluted megacity affected by coastal weather regimes. BAQUNIN has been promoted by the European Space Agency to establish an experimental research infrastructure for the validation of present and future satellite atmospheric products and the in-depth investigation of the planetary and urban boundary layers. Here, the main characteristics of the three sites are described, providing information about the complex instrumental suite and the produced data. The supersite adopts a policy of free sharing of its validated dataset with the community. Finally, the BAQUNIN potential is demonstrated with a case study involving a major fire that occurred in a waste treatment plant near the urban center of Rome, and the consequent investigation of the plume properties revealed by different instruments.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Annalisa Di Bernardino, annalisa.dibernardino@uniroma1.it

Abstract

The Boundary layer Air Quality-analysis Using Network of Instruments (BAQUNIN) supersite is presented. The site has been collecting pollutant concentrations and meteorological parameters since 2017. Currently, BAQUNIN consists of three observation sites located in the city center of Rome (Italy), and in the neighboring semirural and rural areas. To the best of our knowledge, BAQUNIN is one of the first observatories in the world to involve several passive and active ground-based instruments installed in multiple locations, managed by different research institutions, in a highly polluted megacity affected by coastal weather regimes. BAQUNIN has been promoted by the European Space Agency to establish an experimental research infrastructure for the validation of present and future satellite atmospheric products and the in-depth investigation of the planetary and urban boundary layers. Here, the main characteristics of the three sites are described, providing information about the complex instrumental suite and the produced data. The supersite adopts a policy of free sharing of its validated dataset with the community. Finally, the BAQUNIN potential is demonstrated with a case study involving a major fire that occurred in a waste treatment plant near the urban center of Rome, and the consequent investigation of the plume properties revealed by different instruments.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Annalisa Di Bernardino, annalisa.dibernardino@uniroma1.it
Save