• Arias, P. A. , and Coauthors, 2021: Hydroclimate of the Andes Part II: Hydroclimate variability and sub-continental patterns. Front. Earth Sci., 8, 505467, https://doi.org/10.3389/feart.2020.505467.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashfaq, M. , and Coauthors, 2017: Sources of errors in the simulation of south Asian summer monsoon in the CMIP5 GCMs. Climate Dyn., 49, 193223, https://doi.org/10.1007/s00382-016-3337-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashfaq, M. , and Coauthors, 2021: Robust late 21st century shift in the regional monsoons in RegCM-CORDEX simulations. Climate Dyn., 57, 14631488, https://doi.org/10.1007/s00382-020-05306-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ban, N. , J. Schmidli , and C. Schar , 2014: Evaluation of the convection-resolving regional climate modeling approach in decade-long simulations. J. Geophys. Res. Atmos., 119, 78897907, https://doi.org/10.1002/2014JD021478.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ban, N. , and Coauthors, 2021: The first multi-model ensemble of regional climate simulations at kilometer scale resolution, Part I: Evaluation of precipitation. Climate Dyn., 57, 275302, https://doi.org/10.1007/s00382-021- 05708-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Beck, H. E. , and Coauthors, 2020: Bias correction of global high-resolution precipitation climatologies using streamflow observations from 9372 catchments. J. Climate, 33, 12991315, https://doi.org/10.1175/JCLI-D-19-0332.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Boé, J. , S. Somot , L. Corre , and P. Nabat , 2020: Large discrepancies in summer climate change over Europe as projected by global and regional climate models: Causes and consequences. Climate Dyn., 54, 29813002, https://doi.org/10.1007/s00382-020-05153-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ciarlo`, J. M. , and Coauthors, 2021: A new spatially distributed added value index for regional climate models: The EURO-CORDEX and the CORDEX-CORE highest resolution ensembles. Climate Dyn., 57, 14031424, https://doi.org/10.1007/s00382-020-05400-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collins, W. J. , and Coauthors, 2011: Development and evaluation of an Earth-system model-HadGEM2. Geosci. Model Dev., 4, 10511075, https://doi.org/10.5194/gmd-4-1051-2011.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coppola, E. , and Coauthors, 2020: A first-of-its-kind multi-model convection permitting ensemble for investigating convective phenomena over Europe and the Mediterranean. Climate Dyn., 55, 334, https://doi.org/10.1007/s00382-018-4521-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Coppola, E. , and Coauthors, 2021: Climate hazard indices projections based on CORDEX-CORE, CMIP5 and CMIP6 ensembles. Climate Dyn., 57, 12931383, https://doi.org/10.1007/s00382-021-05640-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • da Rocha, R. P. , M. S. Reboita , L. M. M. Dutra , M. Llopart , and E. Coppola , 2014: Interannual variability associated with ENSO: Present and future climate projections of RegCM4 for South America-CORDEX domain. Climatic Change, 125, 95109, https://doi.org/10.1007/s10584-014-1119-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dee, D. P. , and Coauthors, 2011: The ERA-Interim re-analysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, https://doi.org/10.1002/qj.828.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Déqué, M. , and Coauthors, 2007: An intercomparison of regional climate simulations for Europe: Assessing uncertainties in model projections. Climatic Change, 81, 5370, https://doi.org/10.1007/s10584-006-9228-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Luca, A. , R. de Elia , and R. Laprise , 2012: Potential for added value in precipitation simulated by high resolution nested regional climate models and observations. Climate Dyn., 38, 12291247, https://doi.org/10.1007/s00382-011-1068-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Di Luca, A. , R. de Elia , and R. Laprise , 2013: Potential for small scale added value of RCM’s downscaled climate change signal. Climate Dyn., 40, 601618, https://doi.org/10.1007/s00382-012-1415-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diro, G. T. , and Coauthors, 2014: Tropical cyclones in a regional climate change projection with RegCM4 over the CORDEX Central America domain. Climatic Change, 125, 7994, https://doi.org/10.1007/s10584-014-1155-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dunne, J. P. , and Coauthors, 2012: GFDL’s ESM2 global coupled climate-carbon earth system models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 66466665, https://doi.org/10.1175/JCLI-D-11-00560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Elguindi, N. , F. Giorgi , and U. U. Turuncoglu , 2014: Assessment of CMIP5 global model simulations over the subset of CORDEX domains used in the Phase I CREMA. Climatic Change, 125, 721, https://doi.org/10.1007/s10584-013-0935-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Endris, H. S. , and Coauthors, 2018: Future changes in rainfall associated with ENSO, IOD and changes in the mean state over Eastern Africa. Climate Dyn., 52, 20292053, https://doi.org/10.1007/s00382-018-4239-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Evans, J. P. , and Coauthors, 2021: The CORDEX Australasia ensemble: Evaluation and future projections. Climate Dyn., 57, 13851401, https://doi.org/10.1007/s00382-020-05459-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Eyring, V. , and Coauthors, 2016: Overview of the Coupled Modeling Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev., 9, 19371958, https://doi.org/10.5194/gmd-9-1937-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fantini, A. , and Coauthors, 2018: Assessment of multiple daily precipitation statistics in ERA-Interim driven Med-CORDEX and EURO-CORDEX experiments against high resolution observations. Climate Dyn., 51, 877900, https://doi.org/10.1007/s00382-016-3453-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Forster, P. M. , A. C. Maycock , C. M. McKenna , and C. J. Smith , 2020: Latest climate models confirm need for urgent mitigation. Nat. Climate Change, 10, 710, https://doi.org/10.1038/s41558-019-0660-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Fuentes-Franco, R. , F. Giorgi , E. Coppola , and K. Zimmermann , 2017: Sensitivity of tropical cyclones to resolution, convection scheme and ocean flux parameterization over eastern tropical Pacific and tropical North Atlantic Oceans in the RegCM4 model. Climate Dyn., 49, 547561, https://doi.org/10.1007/s00382-016-3357-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2002: Dependence of surface climate interannual variability on spatial scale. Geophys. Res. Lett., 29, 2101, https://doi.org/10.1029/2002GL016175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2006: Climate change hot-spots. Geophys. Res. Lett., 33, L08707, https://doi.org/10.1029/2006GL025734.

  • Giorgi, F., 2019: Thirty years of regional climate modeling: Where are we and where are we going next? J. Geophys. Res. Atmos., 124, 56965723, https://doi.org/10.1029/2018JD030094.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F. , and X. Bi , 2009: The Time of Emergence (TOE) of GHG-forced precipitation change hot-spots. Geophys. Res. Lett., 36, L06709, https://doi.org/10.1029/2009GL037593.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F. , and W. L. Gutowski , 2015: Regional dynamical downscaling and the CORDEX initiative. Annu. Rev. Environ. Resour., 40, 467490, https://doi.org/10.1146/annurev-environ-102014-021217.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F. , C. Jones , and G. Asrar , 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175183.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F. , and Coauthors, 2012: RegCM4: Model description and preliminary tests over multiple CORDEX domains. Climate Res., 52, 729, https://doi.org/10.3354/cr01018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F. , and Coauthors, 2016: Enhanced summer convective rainfall at Alpine high elevations in response to climate warming. Nat. Geosci., 9, 584589, https://doi.org/10.1038/ngeo2761.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Giorgi, F. , F. Raffaele , and E. Coppola , 2019: The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dyn., 10, 7389, https://doi.org/10.5194/esd-10-73-2019.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Glazer, R. , and Coauthors, 2021: Projected changes to severe thunderstorm environments as a result of 21st century warming from RegCM CORDEX-CORE simulations. Climate Dyn., 57, 15951613, https://doi.org/10.1007/s00382-020-05439-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutowski, W. J. , and Coauthors, 2016: WCRP Coordinated Regional Downscaling EXperiment (CORDEX): A diagnostic MIP to CMIP6. Geosci. Model Dev., 9, 40874095, https://doi.org/10.5194/gmd-9-4087-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gutowski, W. J. , and Coauthors, 2020: The ongoing need for high resolution regional climate models: Process understanding and stakeholder information. Bull. Amer. Meteor. Soc., 101, E664E683, https://doi.org/10.1175/BAMS-D-19-0113.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Haarsma, R. J. , and Coauthors, 2016: High Resolution model Intercomparison project (HighResMIPv1.0) for CMIP6. Geosci. Model Dev., 9, 41854208, https://doi.org/10.5194/gmd-9-4185-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hewitson, B. C. , J. Daron , R. G. Crane , M. F. Zermoglio , and C. Jack , 2014: Interrogating empirical-statistical downscaling. Climatic Change, 122, 539554, https://doi.org/10.1007/s10584-013-1021-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127, 13621373, https://doi.org/10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huffman, G. J. , and Coauthors, 2001: The TRMM Multi-satellite Precipitation Analysis (TMPA): Quasi global, multi-year combined sensor-precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, https://doi.org/10.1175/JHM560.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Im, E.-S. , and Coauthors, 2021: Emergence of robust anthropogenic increase of heat stress-related variables projected from CORDEX-CORE climate simulations. Climate Dyn., 57, 16291644, https://doi.org/10.1007/s00382-020-05398-w.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., https://doi.org/10.1017/CBO9781107415324.

    • Search Google Scholar
    • Export Citation
  • Jacob, D. , and R. Podzun , 1997: Sensitivity studies with the regional climate model REMO. Meteor. Atmos. Phys., 63, 119129, https://doi.org/10.1007/BF01025368.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, D. , and Coauthors, 2012: Assessing the transferability of the regional climate model REMO to Different Coordinated Regional Climate Downscaling Experiment (CORDEX) Regions. Atmosphere, 3, 181199, https://doi.org/10.3390/atmos3010181.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, D. , and Coauthors, 2013: EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Change, 14, 563578, https://doi.org/10.1007/s10113-013-0499-2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jacob, D. , and Coauthors, 2020: Regional climate downscaling over Europe: Perspectives from the EURO-CORDEX community. Reg. Environ. Change, 20, 51, https://doi.org/10.1007/s10113-020-01606-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jin, C. S. , and Coauthors, 2016: Evaluation of climatological tropical cyclone activity over the western North Pacific in the CORDEX-East Asia multi-RCM simulations. Climate Dyn., 47, 765778, https://doi.org/10.1007/s00382-015-2869-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kendon, E. J. , and Coauthors, 2014: Heavier summer downpours with climate change revealed by weather forecast resolution models. Nat. Climate Change, 4, 570576, https://doi.org/10.1038/nclimate2258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Knapp, K. R. , H. J. Diamond , J. P. Kossin , M. C. Kruk , and C. J. Schreck , 2018: International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4. NOAA National Centers for Environmental Information, accessed 18 August 2019, https://doi.org/10.25921/82ty-9e16.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R. , and Coauthors, 2015: Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Climate, 28, 72037224, https://doi.org/10.1175/JCLI-D-15-0129.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lavender, S. L. , and K. J. E. Walsh , 2011: Dynamically downscaled simulations of Australian region tropical cyclones in current and future climates. Geophys. Res. Lett., 38, L10705, https://doi.org/10.1029/2011GL047499.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lenderink, G. , A. van Ulden , B. van den Hurk , and E. van Meijgard , 2007: Summertime interannual temperature variability in an ensemble of regional model simulations: Analysis of the surface energy budget. Climatic Change, 81, 233247, https://doi.org/10.1007/s10584-006-9229-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Llopart, M. , and Coauthors, 2021: Assessing changes in atmospheric water budget as drivers for precipitation change over two CORDEX-CORE domains. Climate Dyn., 57, 16151628, https://doi.org/10.1007/s00382-020-05539-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lloyd, E. A. , L. O. Mearns , and M. Bukovsky , 2020: An analysis of the disagreement about added value by regional climate models. Synthese, 198, 11 64511 672, https://doi.org/10.1007/s11229-020-02821-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luna-Niño, R. , T. Cavazos , J.A. Torres-Alavez , F. Giorgi and E. Coppola , 2021: Interannual variability of the boreal winter subtropical jet stream and teleconnections over the CORDEX-CAM domain during 1980–2010. Climate Dyn., 57, 15711594, https://doi.org/10.1007/s00382-020-05509-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lundquist, J. , M. Hughes , E. Gutmann , and S. Kapnick , 2019: Our skill in modeling mountain rain and snow is bypassing the skill of our observational networks. Bull. Amer. Meteor. Soc., 100, 24732490, https://doi.org/10.1175/BAMS-D-19-0001.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McGregor, J. L., 2015: Recent developments in variable-resolution global climate modeling. Climatic Change, 129, 369380, https://doi.org/10.1007/s10584-013-0866-5.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McSweeney, C. F. , R. G. Jones , R. W. Lee , and D. P. Rowell , 2015: Selecting CMIP5 GCMs for downscaling over multiple regions. Climate Dyn., 44, 32373260, https://doi.org/10.1007/s00382-014-2418-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meque, A. , and B. Abiodun , 2015: Simulating the link between ENSO and summer drought in southern Africa using regional climate models. Climate Dyn., 44, 18811900, https://doi.org/10.1007/s00382-014-2143-3.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Moss, R. H. , and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, https://doi.org/10.1038/nature08823.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Paeth, H. , and Coauthors, 2011: Progress in regional downscaling of West Africa precipitation. Atmos. Sci. Lett., 12, 7582, https://doi.org/10.1002/asl.306.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pal, J. S. , and Coauthors, 2007: Regional climate modeling for the developing world: The ICTP RegCM3 and RegCNET. Bull. Amer. Meteor. Soc., 88, 13951410, https://doi.org/10.1175/BAMS-88-9-1395.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pichelli, E. , and Coauthors, 2021: The first multi-model ensemble of regional climate simulations at kilometer-scale resolution Part 2: Historical and future simulations of precipitation. Climate Dyn., 56, 35813602, https://doi.org/10.1007/s00382-021-05657-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Powers, J. G. , and Coauthors, 2017: The Weather Research and Forecasting Model: Overview, system efforts, and future directions. Bull. Amer. Meteor. Soc., 98, 17171737, https://doi.org/10.1175/BAMS-D-15-00308.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F. , and Coauthors, 2015: A review on regional convection-permitting climate modeling: Demonstrations, prospects and challenges. Rev. Geophys., 53, 323361, https://doi.org/10.1002/2014RG000475.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Prein, A. F. , and Coauthors, 2016: Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: High resolution, high benefits? Climate Dyn., 46, 383412, https://doi.org/10.1007/s00382-015-2589-y.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. , and Coauthors, 2011: High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: A process study of current and warmer climate. J. Climate, 24, 30153048, https://doi.org/10.1175/2010JCLI3985.1https://doi.org/10.1175/2010JCLI3985.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Reboita, M. S. , and Coauthors, 2021: Future changes in the wintertime cyclonic activity over the CORDEX-CORE Southern Hemisphere domains in a multi-model approach. Climate Dyn., 57, 15331549, https://doi.org/10.1007/s00382-020-05317-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Remedio, A. R. , and Coauthors, 2019: Evaluation of new CORDEX simulations using an updated Koppen-Trewarths climate classification. Atmosphere, 10, 726, https://doi.org/10.3390/atmos10110726.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rockel, B. , A. Will , and A. Hense , 2008: The regional climate model COSMO-CLM (CCLM). Meteor. Z., 17, 347348, https://doi.org/10.1127/0941-2948/2008/0309.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rummukainen, M., 2010: State-of-the-art with regional climate models. Wiley Interdiscip. Rev.: Climate Change, 1, 8296, https://doi.org/10.1002/wcc.8.

    • Search Google Scholar
    • Export Citation
  • Rummukainen, M., 2016: Added value in regional climate modeling. Wiley Interdiscip. Rev.: Climate Change, 7, 145159, https://doi.org/10.1002/wcc.378.

    • Search Google Scholar
    • Export Citation
  • Ruti, P. , and Coauthors, 2016: MED-CORDEX initiative for Mediterranean climate studies. Bull. Amer. Meteor. Soc., 97, 11871208, https://doi.org/10.1175/BAMS-D-14-00176.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sawadogo, W. , and Coauthors, 2021: Current and future potential of solar and wind energy over Africa using the RegCM4 CORDEX-CORE ensemble. ­ Climate Dyn., 57, 16471672, https://doi.org/10.1007/s00382-020-05377-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stevens, B. , and Coauthors, 2019: DYAMOND: The DYnamics of the atmospheric general circulation modeled on non-hydrostatic domains. Prog. Earth Planet. Sci., 6, 61, https://doi.org/10.1186/s40645-019-0304-z.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Strandberg, G. , and Coauthors, 2014: CORDEX Scenarios for Europe from the Rossby Centre Regional Climate Model RCA4. Rep. Meteorology and Climatology 116, SMHI, 75 pp., www.smhi.se/en/publications/cordex-scenarios-for-europe-from-the-rossby-centre-regional-climate-model-rca4-1.90274.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E. , R. J. Stouffer , and G. A. Meehl , 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Teichmann, C. , and Coauthors, 2021: Assessing mean climate change signals in the global CORDEX-CORE ensemble. Climate Dyn., 57, 12691292, https://doi.org/10.1007/s00382-020-05494-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Termonia, P. , and Coauthors, 2018: The ALADIN system and its canonical model configurations AROME CY41T1 and ALARO CY40T1. Geosci. Model Dev., 11, 257281, https://doi.org/10.5194/gmd-11-257-2018.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torma, C. , F. Giorgi , and E. Coppola , 2015: Added value of regional climate modeling over areas characterized by complex terrain—Precipitation over the Alps. J. Geophys. Res. Atmos., 120, 39573972, https://doi.org/10.1002/2014JD022781https://doi.org/10.1002/2014JD022781.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres-Alavez, J. A. , and Coauthors, 2021a: Future projections in tropical cyclone activity over multiple CORDEX domains from RegCM4 CORDEX-CORE simulations. Climate Dyn., 57, 15071531, https://doi.org/10.1007/s00382-021-05728-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres-Alavez, J. A. , F. Giorgi , F. Kucharski , and E. Coppola , 2021b: ENSO teleconnections in an ensemble of CORDEX-CORE regional simulations. Climate Dyn., 57, 14451461, https://doi.org/10.1007/s00382-020-05594-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Torres-Alavez, J. A. , and Coauthors, 2021c: Future projections in the climatology of global low-level jets from CORDEX-CORE simulations. Climate Dyn., 57, 15511569, https://doi.org/10.1007/s00382-021-05671-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tourigny, E. , and C. Jones , 2009: An analysis of regional climate model performance over the tropical Americas. Part II: Simulating subseasonal variability of precipitation associated with ENSO forcing. Tellus, 61A, 343356, https://doi.org/10.1111/j.1600-0870.2008.00387.x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trapp, R. J. , and Coauthors, 2007: Changes in severe thunderstorm environment frequency during the 21st century caused by anthropogenically enhanced global radiative forcing. Proc. Natl. Acad. Sci. USA, 104, 19 71919 723, https://doi.org/10.1073/pnas.0705494104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E. , A. Dai , R. M. Rasmussen , and D. B. Parsons , 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051218, https://doi.org/10.1175/BAMS-84-9-1205.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Vishnu, S. , J. Sanjay , and R. Krishnan , 2019: Assessment of climatological tropical cyclone activity over the north Indian Ocean in the CORDEX-South Asia regional climate models. Climate Dyn., 53, 51015118, https://doi.org/10.1007/s00382-019-04852-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Watanabe, M. , and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 63126335, https://doi.org/10.1175/2010JCLI3679.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Weber, T. , P. Bowyer , D. Rechid , S. Pfeifer , F. Raffaele , A. R. Remedio , C. Teichmann , and D. Jacob , 2020: Analysis of compound climate extremes and exposed population in Africa under two different emission scenarios. Earth’s Future, 8, e2019EF001473, https://doi.org/10.1029/2019EF001473.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zanchettin, D. , A. Rubino , D. Matei , and J. H. Jungclaus , 2013: Multidecadal-to-centennial SST variability in the MPI-ESM simulation ensemble for the last millennium. Climate Dyn., 40, 13011318, https://doi.org/10.1007/s00382-012-1361-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, Z. S. , and Coauthors, 2012: Pre-industrial and mid-Pliocene simulations with NorESM-L. Geosci. Model Dev., 5, 523533, https://doi.org/10.5194/gmd-5-523-2012.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 13 13 0
Full Text Views 1366 1037 57
PDF Downloads 1407 1166 68

The CORDEX-CORE EXP-I Initiative: Description and Highlight Results from the Initial Analysis

View More View Less
  • 1 Abdus Salam International Centre for Theoretical Physics, Trieste, Italy;
  • | 2 Climate Service Center Germany (GERICS), Hamburg, Germany;
  • | 3 Abdus Salam International Centre for Theoretical Physics, Trieste, Italy;
  • | 4 Oak Ridge National Laboratory, Oak Ridge, Tennessee;
  • | 5 University of Innsbruck, Innsbruck, Austria;
  • | 6 Climate Service Center Germany (GERICS), Hamburg, Germany;
  • | 7 National Center for Atmospheric Research, Boulder, Colorado;
  • | 8 Climate Service Center Germany (GERICS), Hamburg, Germany;
  • | 9 Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico;
  • | 10 National Institute of Oceanography and Applied Geophysics (INOGS), and Abdus Salam International Centre for Theoretical Physics, Trieste, Italy;
  • | 11 University of São Paulo, São Paulo, Brazil;
  • | 12 Abdus Salam International Centre for Theoretical Physics, Trieste, Italy;
  • | 13 National Institute of Oceanography and Applied Geophysics (INOGS), and Abdus Salam International Centre for Theoretical Physics, Trieste, Italy;
  • | 14 Climate Change Research Centre, School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, New South Wales, Australia;
  • | 15 Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China;
  • | 16 Abdus Salam International Centre for Theoretical Physics, Trieste, Italy;
  • | 17 Climate Service Center Germany (GERICS), Hamburg, Germany;
  • | 18 Hong Kong University of Science and Technology, Hong Kong, China;
  • | 19 Climate Service Center Germany (GERICS), Hamburg, Germany;
  • | 20 Climate Service Center Germany (GERICS), Hamburg, Germany;
  • | 21 São Paulo State University, São Paulo, Brazil;
  • | 22 Abdus Salam International Centre for Theoretical Physics, Trieste, Italy;
  • | 23 Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico;
  • | 24 National Institute of Oceanography and Applied Geophysics (INOGS), and Abdus Salam International Centre for Theoretical Physics, Trieste, Italy;
  • | 25 Abdus Salam International Centre for Theoretical Physics, Trieste, Italy;
  • | 26 Federal University of Itajuba, Itajuba, Brazil;
  • | 27 Climate Service Center Germany (GERICS), Hamburg, Germany;
  • | 28 University of Augsburg, Augsburg, Germany
  • | 29 Climate Service Center Germany (GERICS), Hamburg, Germany;
  • | 30 Abdus Salam International Centre for Theoretical Physics, Trieste, Italy;
  • | 31 Climate Service Center Germany (GERICS), Hamburg, Germany;
Restricted access

Abstract

We describe the first effort within the Coordinated Regional Climate Downscaling Experiment–Coordinated Output for Regional Evaluation, or CORDEX-CORE EXP-I. It consists of a set of twenty-first-century projections with two regional climate models (RCMs) downscaling three global climate model (GCM) simulations from the CMIP5 program, for two greenhouse gas concentration pathways (RCP8.5 and RCP2.6), over nine CORDEX domains at ∼25-km grid spacing. Illustrative examples from the initial analysis of this ensemble are presented, covering a wide range of topics, such as added value of RCM nesting, extreme indices, tropical and extratropical storms, monsoons, ENSO, severe storm environments, emergence of change signals, and energy production. They show that the CORDEX-CORE EXP-I ensemble can provide downscaled information of unprecedented comprehensiveness to increase understanding of processes relevant for regional climate change and impacts, and to assess the added value of RCMs. The CORDEX-CORE EXP-I dataset, which will be incrementally augmented with new simulations, is intended to be a public resource available to the scientific and end-user communities for application to process studies, impacts on different socioeconomic sectors, and climate service activities. The future of the CORDEX-CORE initiative is also discussed.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Filippo Giorgi, giorgi@ictp.it

Abstract

We describe the first effort within the Coordinated Regional Climate Downscaling Experiment–Coordinated Output for Regional Evaluation, or CORDEX-CORE EXP-I. It consists of a set of twenty-first-century projections with two regional climate models (RCMs) downscaling three global climate model (GCM) simulations from the CMIP5 program, for two greenhouse gas concentration pathways (RCP8.5 and RCP2.6), over nine CORDEX domains at ∼25-km grid spacing. Illustrative examples from the initial analysis of this ensemble are presented, covering a wide range of topics, such as added value of RCM nesting, extreme indices, tropical and extratropical storms, monsoons, ENSO, severe storm environments, emergence of change signals, and energy production. They show that the CORDEX-CORE EXP-I ensemble can provide downscaled information of unprecedented comprehensiveness to increase understanding of processes relevant for regional climate change and impacts, and to assess the added value of RCMs. The CORDEX-CORE EXP-I dataset, which will be incrementally augmented with new simulations, is intended to be a public resource available to the scientific and end-user communities for application to process studies, impacts on different socioeconomic sectors, and climate service activities. The future of the CORDEX-CORE initiative is also discussed.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Filippo Giorgi, giorgi@ictp.it
Save