• Andreae, M. , and Coauthors, 1985: Dimethyl sulfide in the marine atmosphere. J. Geophys. Res., 90, 12 89112 900, https://doi.org/10.1029/JD090iD07p12891.

    • Search Google Scholar
    • Export Citation
  • Anenberg, S. C. , and Coauthors, 2012: Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls. Environ. Health Perspect., 120, 831839, https://doi.org/10.1289/ehp.1104301.

    • Search Google Scholar
    • Export Citation
  • Ayers, G. , and Coauthors, 1996: The annual cycle of peroxides and ozone in marine air at Cape Grim, Tasmania. J. Atmos. Chem., 23, 221252, https://doi.org/10.1007/BF00055155.

    • Search Google Scholar
    • Export Citation
  • Bates, K. H., and Coauthors, 2021: The global budget of atmospheric methanol: New constraints on secondary, oceanic, and terrestrial sources. J. Geophys. Res. Atmos., 126, e2020JD033439, https://doi.org/10.1029/2020JD033439.

    • Search Google Scholar
    • Export Citation
  • Bates, T., B. Lamb, A. Guenther, J. Dignon, and R. Stoiber, 1992: Sulfur emissions to the atmosphere from natural sources. J. Atmos. Chem., 14, 315337, https://doi.org/10.1007/BF00115242.

    • Search Google Scholar
    • Export Citation
  • Bian, H. , and Coauthors, 2019: Observationally constrained analysis of sea salt aerosol in the marine atmosphere. Atmos. Chem. Phys., 19, 10 77310 785, https://doi.org/10.5194/acp-19-10773-2019.

    • Search Google Scholar
    • Export Citation
  • Bourgeois, I. , and Coauthors, 2020: Global-scale distribution of ozone in the remote troposphere from the ATom and HIPPO airborne field missions. Atmos. Chem. Phys., 20, 10 61110 635, https://doi.org/10.5194/acp-20-10611-2020.

    • Search Google Scholar
    • Export Citation
  • Brewer, J., and Coauthors, 2020: Evidence for an oceanic source of methyl ethyl ketone to the atmosphere. Geophys. Res. Lett., 47, e2019GL086045, https://doi.org/10.1029/2019GL086045.

    • Search Google Scholar
    • Export Citation
  • Brock, C. A. , and Coauthors, 2019: Aerosol size distributions during the Atmospheric Tomography Mission (ATom): Methods, uncertainties, and data products. Atmos. Meas. Tech., 12, 30813099, https://doi.org/10.5194/amt-12-3081-2019.

    • Search Google Scholar
    • Export Citation
  • Brock, C. A. , and Coauthors, 2021: Ambient aerosol properties in the remote atmosphere from global-scale in-situ measurements. Atmos. Chem. Phys., 21, 152023152063, https://doi.org/10.5194/acp-21-15023-2021.

    • Search Google Scholar
    • Export Citation
  • Brune, W., and Coauthors, 2020: Exploring oxidation in the remote free troposphere: Insights from Atmospheric Tomography (ATom). J. Geophys. Res. Atmos., 125, e2019JD031685, https://doi.org/10.1029/2019JD031685.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., J. E. Lovelock, M. O. Andreae, and S. G. Warren, 1987: Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326, 655661, https://doi.org/10.1038/326655a0.

    • Search Google Scholar
    • Export Citation
  • Chevallier, F., M. Remaud, C. W. O’Dell, D. Baker, P. Peylin, and A. Cozic, 2019: Objective evaluation of surface-and satellite-driven carbon dioxide atmospheric inversions. Atmos. Chem. Phys., 19, 14 23314 251, https://doi.org/10.5194/acp-19-14233-2019.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. D. , 1993: Atmospheric nuclei in the Pacific midtroposphere: Their nature, concentration, and evolution. J. Geophys. Res., 98, 20 63320 647, https://doi.org/10.1029/93JD00797.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., and V. N. Kapustin, 2002: A Pacific aerosol survey. Part I: A decade of data on particle production, transport, evolution, and mixing in the troposphere. J. Atmos. Sci., 59, 363382, https://doi.org/10.1175/1520-0469(2002)059<0363:APASPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., and V. N. Kapustin, 2010: Hemispheric aerosol vertical profiles: Anthropogenic impacts on optical depth and cloud nuclei. Science, 329, 14881492, https://doi.org/10.1126/science.1188838.

    • Search Google Scholar
    • Export Citation
  • Crawford, J. , and Coauthors, 2004: Relationship between Measurements of Pollution in the Troposphere (MOPITT) and in situ observations of CO based on a large‐scale feature sampled during TRACE‐P. J. Geophys. Res., 109, D15S04, https://doi.org/10.1029/2003JD004308.

    • Search Google Scholar
    • Export Citation
  • Crowell, S. , and Coauthors, 2019: The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network. Atmos. Chem. Phys., 19, 97979831, https://doi.org/10.5194/acp-19-9797-2019.

    • Search Google Scholar
    • Export Citation
  • Deeter, M. N. , and Coauthors, 2019: Radiance-based retrieval bias mitigation for the MOPITT instrument: The version 8 product. Atmos. Meas. Tech., 12, 45614580, https://doi.org/10.5194/amt-12-4561-2019.

    • Search Google Scholar
    • Export Citation
  • Di Carlo, P. , and Coauthors, 2004: Missing OH reactivity in a forest: Evidence for unknown reactive biogenic VOCs. Science, 304, 722725, https://doi.org/10.1126/science.1094392.

    • Search Google Scholar
    • Export Citation
  • Eastham, S. D., and D. J. Jacob, 2017: Limits on the ability of global Eulerian models to resolve intercontinental transport of chemical plumes. Atmos. Chem. Phys., 17, 25432553, https://doi.org/10.5194/acp-17-2543-2017.

    • Search Google Scholar
    • Export Citation
  • Emmons, L. , and Coauthors, 2015: The POLARCAT Model Intercomparison Project (POLMIP): Overview and evaluation with observations. Atmos. Chem. Phys., 15, 67216744, https://doi.org/10.5194/acp-15-6721-2015.

    • Search Google Scholar
    • Export Citation
  • Fiore, A. M. , and Coauthors, 2012: Global air quality and climate. Chem. Soc. Rev., 41, 66636683, https://doi.org/10.1039/c2cs35095e.

    • Search Google Scholar
    • Export Citation
  • Fishman, J., C. E. Watson, J. C. Larsen, and J. A. Logan, 1990: Distribution of tropospheric ozone determined from satellite data. J. Geophys. Res., 95, 35993617, https://doi.org/10.1029/JD095iD04p03599.

    • Search Google Scholar
    • Export Citation
  • Fishman, J., K. Fakhruzzaman, B. Cros, and D. Nganga, 1991: Identification of widespread pollution in the Southern Hemisphere deduced from satellite analyses. Science, 252, 16931696, https://doi.org/10.1126/science.252.5013.1693.

    • Search Google Scholar
    • Export Citation
  • Fishman, J., J. M. Hoell Jr., R. D. Bendura, R. J. McNeal, and V. W. Kirchhoff, 1996: NASA GTE trace a experiment (September–October 1992): Overview. J. Geophys. Res., 101, 23 86523 879, https://doi.org/10.1029/96JD00123.

    • Search Google Scholar
    • Export Citation
  • Fleming, Z. L. , and Coauthors, 2018: Tropospheric Ozone Assessment Report: Present-day ozone distribution and trends relevant to human health. Elementa, 6, 12, https://doi.org/10.1525/elementa.273.

    • Search Google Scholar
    • Export Citation
  • Fried, A. , and Coauthors, 2008: Formaldehyde over North America and the North Atlantic during the summer 2004 INTEX campaign: Methods, observed distributions, and measurement‐model comparisons. J. Geophys. Res., 113, D10302, https://doi.org/10.1029/2007JD009185.

    • Search Google Scholar
    • Export Citation
  • Froyd, K. D. , and Coauthors, 2019: A new method to quantify mineral dust and other aerosol species from aircraft platforms using single-particle mass spectrometry. Atmos. Meas. Tech., 12, 62096239, https://doi.org/10.5194/amt-12-6209-2019.

    • Search Google Scholar
    • Export Citation
  • Gaudel, A. , and Coauthors, 2018: Tropospheric Ozone Assessment Report: Present-day distribution and trends of tropospheric ozone relevant to climate and global atmospheric chemistry model evaluation. Elementa, 6, 39, https://doi.org/10.1525/elementa.291.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R. , and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Search Google Scholar
    • Export Citation
  • Gonzalez, Y. , and Coauthors, 2021: Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom. Atmos. Chem. Phys., 21, 11 11311 132, https://doi.org/10.5194/acp-21-11113-2021.

    • Search Google Scholar
    • Export Citation
  • Guo, H. , and Coauthors, 2021: Heterogeneity and chemical reactivity of the remote troposphere defined by aircraft measurements. Atmos. Chem. Phys., 21, 13 72913 746, https://doi.org/10.5194/acp-21-13729-2021.

    • Search Google Scholar
    • Export Citation
  • Hall, S. R. , and Coauthors, 2018: Cloud impacts on photochemistry: Building a climatology of photolysis rates from the Atmospheric Tomography mission. Atmos. Chem. Phys., 18, 16 80916 828, https://doi.org/10.5194/acp-18-16809-2018.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, R. Ruedy, A. Lacis, and V. Oinas, 2000: Global warming in the twenty-first century: An alternative scenario. Proc. Natl. Acad. Sci. USA, 97, 98759880, https://doi.org/10.1073/pnas.170278997.

    • Search Google Scholar
    • Export Citation
  • Heald, C. L. , and Coauthors, 2003: Asian outflow and trans‐Pacific transport of carbon monoxide and ozone pollution: An integrated satellite, aircraft, and model perspective. J. Geophys. Res., 108, 4804, https://doi.org/10.1029/2003JD003507.

    • Search Google Scholar
    • Export Citation
  • Helmig, D., D. Tanner, R. Honrath, R. Owen, and D. Parrish, 2008: Nonmethane hydrocarbons at Pico Mountain, Azores: 1. Oxidation chemistry in the North Atlantic region. J. Geophys. Res., 113, D20S91, https://doi.org/10.1029/2007JD008930.

    • Search Google Scholar
    • Export Citation
  • Hintsa, E. J. , and Coauthors, 2021: UAS Chromatograph for Atmospheric Trace Species (UCATS) – A versatile instrument for trace gas measurements on airborne platforms. Atmos. Meas. Tech., 14, 67956819, https://doi.org/10.5194/amt-14-6795-2021.

    • Search Google Scholar
    • Export Citation
  • Hodzic, A., P. S. Kasibhatla, D. S. Jo, C. D. Cappa, J. L. Jimenez, S. Madronich, and R. J. Park, 2016: Rethinking the global Secondary Organic Aerosol (SOA) budget: Stronger production, faster removal, shorter lifetime. Atmos. Chem. Phys., 16, 79177941, https://doi.org/10.5194/acp-16-7917-2016.

    • Search Google Scholar
    • Export Citation
  • Hodzic, A. , and Coauthors, 2020: Characterization of organic aerosol across the global remote troposphere: A comparison of ATom measurements and global chemistry models. Atmos. Chem. Phys., 20, 46074635, https://doi.org/10.5194/acp-20-4607-2020.

    • Search Google Scholar
    • Export Citation
  • Hoffmann, E. H., A. Tilgner, R. Schroedner, P. Bräuer, R. Wolke, and H. Herrmann, 2016: An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry. Proc. Natl. Acad. Sci. USA, 113, 11 77611 781, https://doi.org/10.1073/pnas.1606320113.

    • Search Google Scholar
    • Export Citation
  • Holmes, C. D., M. J. Prather, O. Sovde, and G. Myhre, 2013: Future methane, hydroxyl, and their uncertainties: Key climate and emission parameters for future predictions. Atmos. Chem. Phys., 13, 285302, https://doi.org/10.5194/acp-13-285-2013.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2022: Climate Change 2021: The Physical Science Basis. V. Masson-Delmotte et al., Eds., Cambridge University Press, in press.

  • Katich, J. M. , and Coauthors, 2018: Strong contrast in remote black carbon aerosol loadings between the Atlantic and Pacific basins. J. Geophys. Res. Atmos., 123, 13 38613 395, https://doi.org/10.1029/2018JD029206.

    • Search Google Scholar
    • Export Citation
  • Kirtman, B. , and Coauthors, 2013: Near-term climate change: Projections and predictability. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 9531028.

    • Search Google Scholar
    • Export Citation
  • Koenig, T. K. , and Coauthors, 2020: Quantitative detection of iodine in the stratosphere. Proc. Natl. Acad. Sci. USA, 117, 18601866, https://doi.org/10.1073/pnas.1916828117.

    • Search Google Scholar
    • Export Citation
  • Kulawik, S. S. , and Coauthors, 2021: Evaluation of single-footprint AIRS CH4 profile retrieval uncertainties using aircraft profile measurements. Atmos. Meas. Tech., 14, 335354, https://doi.org/10.5194/amt-14-335-2021.

    • Search Google Scholar
    • Export Citation
  • Lamarque, J.-F. , and Coauthors, 2013: The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and description of models, simulations and climate diagnostics. Geosci. Model Dev., 6, 179206, https://doi.org/10.5194/gmd-6-179-2013.

    • Search Google Scholar
    • Export Citation
  • Lamb, K., and Coauthors, 2021: Global-scale constraints on light-absorbing anthropogenic iron oxide aerosols. npj Climate Atmos. Sci., 4, 15, https://doi.org/10.1038/s41612-021-00171-0.

    • Search Google Scholar
    • Export Citation
  • Liu, J. , and Coauthors, 2021: Carbon monitoring system flux net biosphere exchange 2020 (CMS-Flux NBE 2020). Earth Syst. Sci. Data, 13, 299330, https://doi.org/10.5194/essd-13-299-2021.

    • Search Google Scholar
    • Export Citation
  • Liu, S. C. , and Coauthors, 1992: A study of the photochemistry and ozone budget during the Mauna Loa observatory photochemistry experiment. J. Geophys. Res., 97, 10 46310 471, https://doi.org/10.1029/91JD02298.

    • Search Google Scholar
    • Export Citation
  • Luo, G., F. Yu, and J. M. Moch, 2020: Further improvement of wet process treatments in GEOS-Chem v12.6.0: Impact on global distributions of aerosols and aerosol precursors. Geosci. Model Dev., 13, 28792903, https://doi.org/10.5194/gmd-13-2879-2020.

    • Search Google Scholar
    • Export Citation
  • Lou, S. , and Coauthors, 2020: New SOA treatments within the Energy Exascale Earth System Model (E3SM): Strong production and sinks govern atmospheric SOA distributions and radiative forcing. J. Adv. Model. Earth Syst., 12, e2020MS002266, https://doi.org/10.1029/2020MS002266.

    • Search Google Scholar
    • Export Citation
  • Lu, X. , and Coauthors, 2021: Global methane budget and trend, 2010–2017: Complementarity of inverse analyses using in situ (GLOBALVIEWplus CH4 ObsPack) and satellite (GOSAT) observations. Atmos. Chem. Phys., 21, 46374657, https://doi.org/10.5194/acp-21-4637-2021.

    • Search Google Scholar
    • Export Citation
  • Martínez-Alonso, S. , and Coauthors, 2020: 1.5 years of TROPOMI CO measurements: Comparisons to MOPITT and ATom. Atmos. Meas. Tech., 13, 48414864, https://doi.org/10.5194/amt-13-4841-2020.

    • Search Google Scholar
    • Export Citation
  • McNeal, R., D. Jacob, D. Davis, and S. Liu, 1998: The NASA Global Tropospheric Experiment: Recent accomplishments and future plans. IGAC Newsletter, No. 13, NASA, Boulder, CO, www-air.larc.nasa.gov/missions/tracep/IGAC.htm.

    • Search Google Scholar
    • Export Citation
  • Monks, P. S., L. J. Carpenter, S. A. Penkett, G. P. Ayers, R. W. Gillett, I. E. Galbally, and C. M. Meyer, 1998: Fundamental ozone photochemistry in the remote marine boundary layer: The SOAPEX experiment, measurement and theory. Atmos. Environ., 32, 36473664, https://doi.org/10.1016/S1352-2310(98)00084-3.

    • Search Google Scholar
    • Export Citation
  • Murphy, D. M. , and Coauthors, 2018: An aerosol particle containing enriched uranium encountered in the remote upper troposphere. J. Environ. Radioact., 184, 95100, https://doi.org/10.1016/j.jenvrad.2018.01.006.

    • Search Google Scholar
    • Export Citation
  • Murphy, D. M. , and Coauthors, 2019: The distribution of sea-salt aerosol in the global troposphere. Atmos. Chem. Phys., 19, 40934104, https://doi.org/10.5194/acp-19-4093-2019.

    • Search Google Scholar
    • Export Citation
  • Murphy, D. M. , and Coauthors, 2021: Radiative and chemical implications of the size and composition of aerosol particles in the existing or modified global stratosphere. Atmos. Chem. Phys., 21, 89158932, https://doi.org/10.5194/acp-2020-909.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., and Coauthors, 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis. Cambridge University Press, 659740.

    • Search Google Scholar
    • Export Citation
  • Naik, V. , and Coauthors, 2013: Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys., 13, 52775298, https://doi.org/10.5194/acp-13-5277-2013.

    • Search Google Scholar
    • Export Citation
  • Nalli, N. R. , and Coauthors, 2020: Validation of carbon trace gas profile retrievals from the NOAA-unique combined atmospheric processing system for the cross-track infrared sounder. Remote Sens., 12, 3245, https://doi.org/10.3390/rs12193245.

    • Search Google Scholar
    • Export Citation
  • Nault, B. A., C. Garland, S. Pusede, P. Wooldridge, K. Ullmann, S. Hall, and R. Cohen, 2015: Measurements of CH3O2NO2 in the upper troposphere. Atmos. Meas. Tech., 8, 987997, https://doi.org/10.5194/amt-8-987-2015.

    • Search Google Scholar
    • Export Citation
  • Nault, B. A., and Coauthors, 2021: Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere. Commun. Earth. Environ., 2, 93, https://doi.org/10.1038/s43247-021-00164-0.

    • Search Google Scholar
    • Export Citation
  • Oman, L., J. Ziemke, A. Douglass, D. Waugh, C. Lang, J. Rodriguez, and J. Nielsen, 2011: The response of tropical tropospheric ozone to ENSO. Geophys. Res. Lett., 38, L13706, https://doi.org/10.1029/2011GL047865.

    • Search Google Scholar
    • Export Citation
  • Prather, M. , and Coauthors, 2001: Atmospheric chemistry and greenhouse gases. Climate Change 2001: The Scientific Basis, J. Houghton, Ed., Cambridge University Press, 239287.

    • Search Google Scholar
    • Export Citation
  • Prather, M. , C. D. Holmes, and J. Hsu, 2012: Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry. Geophys. Res. Lett., 39, L09803, https://doi.org/10.1029/2012GL051440.

    • Search Google Scholar
    • Export Citation
  • Prather, M. , and Coauthors, 2017: Global atmospheric chemistry–Which air matters. Atmos. Chem. Phys., 17, 90819102, https://doi.org/10.5194/acp-17-9081-2017.

    • Search Google Scholar
    • Export Citation
  • Prather, M. , and Coauthors, 2018: How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition. Atmos. Meas. Tech., 11, 26532668, https://doi.org/10.5194/amt-11-2653-2018.

    • Search Google Scholar
    • Export Citation
  • Quinn, P. K., and T. S. Bates, 2011: The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature, 480, 5156, https://doi.org/10.1038/nature10580.

    • Search Google Scholar
    • Export Citation
  • Read, K. , and Coauthors, 2012: Multiannual observations of acetone, methanol, and acetaldehyde in remote tropical Atlantic air: Implications for atmospheric OVOC budgets and oxidative capacity. Environ. Sci. Technol., 46, 11 02811 039, https://doi.org/10.1021/es302082p.

    • Search Google Scholar
    • Export Citation
  • Rickly, P. S., L. Xu, J. D. Crounse, P. O. Wennberg, and A. W. Rollins, 2021: Improvements to a laser-induced fluorescence instrument for measuring SO2 – Impact on accuracy and precision. Atmos. Meas. Tech., 14, 24292439, https://doi.org/10.5194/amt-14-2429-2021.

    • Search Google Scholar
    • Export Citation
  • Rollins, A. W. , and Coauthors, 2016: A laser-induced fluorescence instrument for aircraft measurements of sulfur dioxide in the upper troposphere and lower stratosphere. Atmos. Meas. Tech., 9, 46014613, https://doi.org/10.5194/amt-9-4601-2016.

    • Search Google Scholar
    • Export Citation
  • Schill, G. , and Coauthors, 2020: Widespread biomass burning smoke throughout the remote troposphere. Nat. Geosci., 13, 422427, https://doi.org/10.1038/s41561-020-0586-1.

    • Search Google Scholar
    • Export Citation
  • Schum, S. K., B. Zhang, K. Džepina, P. Fialho, C. Mazzoleni, and L. R. Mazzoleni, 2018: Molecular and physical characteristics of aerosol at a remote free troposphere site: Implications for atmospheric aging. Atmos. Chem. Phys., 18, 142017142036, https://doi.org/10.5194/acp-18-14017-2018.

    • Search Google Scholar
    • Export Citation
  • Schwarz, J. , and Coauthors, 2013: Global‐scale seasonally resolved black carbon vertical profiles over the Pacific. Geophys. Res. Lett., 40, 55425547, https://doi.org/10.1002/2013GL057775.

    • Search Google Scholar
    • Export Citation
  • Scovronick, N., H. Adair-Rohani, and N. Borgford-Parnell, 2015: Reducing Global Health Risks through Mitigation of Short-Lived Climate Pollutants: Scoping Report for Policymakers. World Health Organization, 140 pp.

    • Search Google Scholar
    • Export Citation
  • Shindell, D., J. Kuylenstierna, F. Raes, V. Ramanathan, E. Rosenthal, and S. Terry, 2011: Integrated assessment of black carbon and tropospheric ozone: Summary for decision makers. World Meteorological Organization, 38 pp., http://119.78.100.173/C666/handle/2XK7JSWQ/10118.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. , and Coauthors, 2012a: Simultaneously mitigating near-term climate change and improving human health and food security. Science, 335, 183189, https://doi.org/10.1126/science.1210026.

    • Search Google Scholar
    • Export Citation
  • Shindell, D. , and Coauthors, 2012b: Radiative forcing in the ACCMIP historical and future climate simulations. Atmos. Chem. Phys., 12, 21 10521 210, https://doi.org/10.5194/acp-13-2939-2013.

    • Search Google Scholar
    • Export Citation
  • Singh, H., W. Brune, J. Crawford, F. Flocke, and D. J. Jacob, 2009: Chemistry and transport of pollution over the Gulf of Mexico and the Pacific: Spring 2006 INTEX-B campaign overview and first results. Atmos. Chem. Phys., 9, 23012318, https://doi.org/10.5194/acp-9-2301-2009.

    • Search Google Scholar
    • Export Citation
  • St. Clair, J. M., A. K. Swanson, S. A. Bailey, and T. F. Hanisco, 2019: CAFE: A new, improved nonresonant laser-induced fluorescence instrument for airborne in situ measurement of formaldehyde. Atmos. Meas. Tech., 12, 45814590, https://doi.org/10.5194/amt-12-4581-2019.

    • Search Google Scholar
    • Export Citation
  • Stephens, B. B., E. J. Morgan, J. D. Bent, R. F. Keeling, A. S. Watt, S. R. Shertz, and B. C. Daube, 2021: Airborne measurements of oxygen concentration from the surface to the lower stratosphere and pole to pole. Atmos. Meas. Tech., 14, 25432574, https://doi.org/10.5194/amt-14-2543-2021.

    • Search Google Scholar
    • Export Citation
  • Strode, S. A. , and Coauthors, 2018: Forecasting carbon monoxide on a global scale for the ATom-1 aircraft mission: Insights from airborne and satellite observations and modeling. Atmos. Chem. Phys., 18, 10 95510 971, https://doi.org/10.5194/acp-18-10955-2018.

    • Search Google Scholar
    • Export Citation
  • Thames, A. B. , and Coauthors, 2020: Missing OH reactivity in the global marine boundary layer. Atmos. Chem. Phys., 20, 40134029, https://doi.org/10.5194/acp-20-4013-2020.

    • Search Google Scholar
    • Export Citation
  • Travis, K. R. , and Coauthors, 2016: Why do models overestimate surface ozone in the Southeast United States? Atmos. Chem. Phys., 16, 13 56113 577, https://doi.org/10.5194/acp-16-13561-2016.

    • Search Google Scholar
    • Export Citation
  • Travis, K. R. , and Coauthors, 2020: Constraining remote oxidation capacity with ATom observations. Atmos. Chem. Phys., 20, 77537781, https://doi.org/10.5194/acp-20-7753-2020.

    • Search Google Scholar
    • Export Citation
  • Tsigaridis, K. , and Coauthors, 2014: The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmos. Chem. Phys., 14, 10 84510 895, https://doi.org/10.5194/acp-14-10845-2014.

    • Search Google Scholar
    • Export Citation
  • Velders, G. J., D. W. Fahey, J. S. Daniel, M. McFarland, and S. O. Andersen, 2009: The large contribution of projected HFC emissions to future climate forcing. Proc. Natl. Acad. Sci. USA, 106, 10 94910 954, https://doi.org/10.1073/pnas.0902817106.

    • Search Google Scholar
    • Export Citation
  • Veres, P. R. , and Coauthors, 2020: Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere. Proc. Natl. Acad. Sci. USA, 117, 45054510, https://doi.org/10.1073/pnas.1919344117.

    • Search Google Scholar
    • Export Citation
  • Voulgarakis, A. , and Coauthors, 2013: Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos. Chem. Phys., 13, 25632587, https://doi.org/10.5194/acp-13-2563-2013.

    • Search Google Scholar
    • Export Citation
  • Wang, S. , and Coauthors, 2019: Atmospheric acetaldehyde: Importance of air‐sea exchange and a missing source in the remote troposphere. Geophys. Res. Lett., 46, 56015613, https://doi.org/10.1029/2019GL082034.

    • Search Google Scholar
    • Export Citation
  • Wang, S. , and Coauthors, 2020: Global atmospheric budget of acetone: Air‐sea exchange and the contribution to hydroxyl radicals. J. Geophys. Res. Atmos., 125, e2020JD032553, https://doi.org/10.1029/2020JD032553.

    • Search Google Scholar
    • Export Citation
  • Watson, C. E., J. Fishman, and H. G. Reichle Jr., 1990: The significance of biomass burning as a source of carbon monoxide and ozone in the southern hemisphere tropics: A satellite analysis. J. Geophys. Res., 95, 16 44316 450, https://doi.org/10.1029/JD095iD10p16443.

    • Search Google Scholar
    • Export Citation
  • Watson-Parris, D. , and Coauthors, 2019: In situ constraints on the vertical distribution of global aerosol. Atmos. Chem. Phys., 19, 11 76511 790, https://doi.org/10.5194/acp-19-11765-2019.

    • Search Google Scholar
    • Export Citation
  • West, J. J., A. M. Fiore, L. W. Horowitz, and D. L. Mauzerall, 2006: Global health benefits of mitigating ozone pollution with methane emission controls. Proc. Natl. Acad. Sci. USA, 103, 39883993, https://doi.org/10.1073/pnas.0600201103.

    • Search Google Scholar
    • Export Citation
  • Williamson, C. J. , and Coauthors, 2019: A large source of cloud condensation nuclei from new particle formation in the tropics. Nature, 574, 399403, https://doi.org/10.1038/s41586-019-1638-9.

    • Search Google Scholar
    • Export Citation
  • Wofsy, S. C. , 2011: HIAPER Pole-to-Pole Observations (HIPPO): Fine-grained, global-scale measurements of climatically important atmospheric gases and aerosols. Philos. Trans. Roy. Soc. London, A369, 20732086, https://doi.org/10.1098/rsta.2010.0313.

    • Search Google Scholar
    • Export Citation
  • Wolfe, G. M. , and Coauthors, 2019: Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations. Proc. Natl. Acad. Sci. USA, 116, 11 17111 180, https://doi.org/10.1073/pnas.1821661116.

    • Search Google Scholar
    • Export Citation
  • Wu, R., S. Wang, and L. Wang, 2015: New mechanism for the atmospheric oxidation of dimethyl sulfide. The importance of intramolecular hydrogen shift in a CH3SCH2OO radical. J. Phys. Chem., 119A, 112117, https://doi.org/10.1021/jp511616j.

    • Search Google Scholar
    • Export Citation
  • Yang, Y., M. Shao, X. Wang, A. C. Nölscher, S. Kessel, A. Guenther, and J. Williams, 2016: Towards a quantitative understanding of total OH reactivity: A review. Atmos. Environ., 134, 147161, https://doi.org/10.1016/j.atmosenv.2016.03.010.

    • Search Google Scholar
    • Export Citation
  • Young, P., and Coauthors, 2013: Pre-industrial to end 21st century projections of tropospheric ozone from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys., 13, 20632090, https://doi.org/10.5194/acp-13-2063-2013.

    • Search Google Scholar
    • Export Citation
  • Yu, P. , and Coauthors, 2019: Efficient in‐cloud removal of aerosols by deep convection. Geophys. Res. Lett., 46, 10611069, https://doi.org/10.1029/2018GL080544.

    • Search Google Scholar
    • Export Citation
  • Zaelke, D. , 2013: Primer on short-lived climate pollutants. Institute for Governance and Sustainable Development, 72 pp., www.igsd.org/documents/PrimeronShort-LivedClimatePollutantsElectronicVersion.pdf.

    • Search Google Scholar
    • Export Citation
  • Zeng, L. , and Coauthors, 2020: Global measurements of brown carbon and estimated direct radiative effects. Geophys. Res. Lett., 47, e2020GL088747, https://doi.org/10.1029/2020GL088747.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., O. R. Cooper, A. Gaudel, A. M. Thompson, P. Nédélec, S.-Y. Ogino, and J. J. West, 2016: Tropospheric ozone change from 1980 to 2010 dominated by equatorward redistribution of emissions. Nat. Geosci., 9, 875879, https://doi.org/10.1038/ngeo2827.

    • Search Google Scholar
    • Export Citation
  • Zhu, L. , and Coauthors, 2020: Validation of satellite formaldehyde (HCHO) retrievals using observations from 12 aircraft campaigns. Atmos. Chem. Phys., 20, 122329122345, https://doi.org/10.5194/acp-20-12329-2020.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 38 12 0
Full Text Views 4190 1461 300
PDF Downloads 3277 1419 139

The NASA Atmospheric Tomography (ATom) Mission: Imaging the Chemistry of the Global Atmosphere

Chelsea R. ThompsonNOAA Chemical Sciences Laboratory, and University of Colorado Boulder, Boulder, Colorado;

Search for other papers by Chelsea R. Thompson in
Current site
Google Scholar
PubMed
Close
,
Steven C. WofsyHarvard University, Cambridge, Massachusetts;

Search for other papers by Steven C. Wofsy in
Current site
Google Scholar
PubMed
Close
,
Michael J. PratherUniversity of California, Irvine, Irvine, California;

Search for other papers by Michael J. Prather in
Current site
Google Scholar
PubMed
Close
,
Paul A. NewmanNASA Goddard Space Flight Center, Greenbelt, Maryland;

Search for other papers by Paul A. Newman in
Current site
Google Scholar
PubMed
Close
,
Thomas F. HaniscoNASA Goddard Space Flight Center, Greenbelt, Maryland;

Search for other papers by Thomas F. Hanisco in
Current site
Google Scholar
PubMed
Close
,
Thomas B. RyersonNOAA Chemical Sciences Laboratory, Boulder, Colorado;

Search for other papers by Thomas B. Ryerson in
Current site
Google Scholar
PubMed
Close
,
David W. FaheyNOAA Chemical Sciences Laboratory, Boulder, Colorado;

Search for other papers by David W. Fahey in
Current site
Google Scholar
PubMed
Close
,
Eric C. ApelNational Center for Atmospheric Research, Boulder, Colorado;

Search for other papers by Eric C. Apel in
Current site
Google Scholar
PubMed
Close
,
Charles A. BrockNOAA Chemical Sciences Laboratory, Boulder, Colorado;

Search for other papers by Charles A. Brock in
Current site
Google Scholar
PubMed
Close
,
William H. BruneThe Pennsylvania State University, University Park, Pennsylvania;

Search for other papers by William H. Brune in
Current site
Google Scholar
PubMed
Close
,
Karl FroydNOAA Chemical Sciences Laboratory, and University of Colorado Boulder, Boulder, Colorado;

Search for other papers by Karl Froyd in
Current site
Google Scholar
PubMed
Close
,
Joseph M. KatichNOAA Chemical Sciences Laboratory, and University of Colorado Boulder, Boulder, Colorado;

Search for other papers by Joseph M. Katich in
Current site
Google Scholar
PubMed
Close
,
Julie M. NicelyNASA Goddard Space Flight Center, Greenbelt, and University of Maryland, College Park, College Park, Maryland;

Search for other papers by Julie M. Nicely in
Current site
Google Scholar
PubMed
Close
,
Jeff PeischlNOAA Chemical Sciences Laboratory, and University of Colorado Boulder, Boulder, Colorado;

Search for other papers by Jeff Peischl in
Current site
Google Scholar
PubMed
Close
,
Eric RayNOAA Chemical Sciences Laboratory, and University of Colorado Boulder, Boulder, Colorado;

Search for other papers by Eric Ray in
Current site
Google Scholar
PubMed
Close
,
Patrick R. VeresNOAA Chemical Sciences Laboratory, Boulder, Colorado;

Search for other papers by Patrick R. Veres in
Current site
Google Scholar
PubMed
Close
,
Siyuan WangNational Center for Atmospheric Research, Boulder, Colorado;

Search for other papers by Siyuan Wang in
Current site
Google Scholar
PubMed
Close
,
Hannah M. AllenCalifornia Institute of Technology, Pasadena, California;

Search for other papers by Hannah M. Allen in
Current site
Google Scholar
PubMed
Close
,
Elizabeth AsherNational Center for Atmospheric Research, Boulder, Colorado;

Search for other papers by Elizabeth Asher in
Current site
Google Scholar
PubMed
Close
,
Huisheng BianNASA Goddard Space Flight Center, Greenbelt, and University of Maryland, Baltimore County, Baltimore, Maryland;

Search for other papers by Huisheng Bian in
Current site
Google Scholar
PubMed
Close
,
Donald BlakeUniversity of California, Irvine, Irvine, California;

Search for other papers by Donald Blake in
Current site
Google Scholar
PubMed
Close
,
Ilann BourgeoisNOAA Chemical Sciences Laboratory, and University of Colorado Boulder, Boulder, Colorado;

Search for other papers by Ilann Bourgeois in
Current site
Google Scholar
PubMed
Close
,
John BudneyHarvard University, Cambridge, Massachusetts;

Search for other papers by John Budney in
Current site
Google Scholar
PubMed
Close
,
T. Paul BuiNASA Ames Research Center, Mountain View, California;

Search for other papers by T. Paul Bui in
Current site
Google Scholar
PubMed
Close
,
Amy ButlerNOAA Chemical Sciences Laboratory, Boulder, Colorado;

Search for other papers by Amy Butler in
Current site
Google Scholar
PubMed
Close
,
Pedro Campuzano-JostUniversity of Colorado Boulder, Boulder, Colorado;

Search for other papers by Pedro Campuzano-Jost in
Current site
Google Scholar
PubMed
Close
,
Cecilia ChangNASA Ames Research Center, Mountain View, California;

Search for other papers by Cecilia Chang in
Current site
Google Scholar
PubMed
Close
,
Mian ChinNASA Goddard Space Flight Center, Greenbelt, Maryland;

Search for other papers by Mian Chin in
Current site
Google Scholar
PubMed
Close
,
Róisín CommaneHarvard University, Cambridge, Massachusetts;

Search for other papers by Róisín Commane in
Current site
Google Scholar
PubMed
Close
,
Gus CorreaColumbia University, Palisades, New York;

Search for other papers by Gus Correa in
Current site
Google Scholar
PubMed
Close
,
John D. CrounseCalifornia Institute of Technology, Pasadena, California;

Search for other papers by John D. Crounse in
Current site
Google Scholar
PubMed
Close
,
Bruce DaubeHarvard University, Cambridge, Massachusetts;

Search for other papers by Bruce Daube in
Current site
Google Scholar
PubMed
Close
,
Jack E. DibbUniversity of New Hampshire, Durham, New Hampshire;

Search for other papers by Jack E. Dibb in
Current site
Google Scholar
PubMed
Close
,
Joshua P. DiGangiNASA Langley Research Center, Hampton, Virginia;

Search for other papers by Joshua P. DiGangi in
Current site
Google Scholar
PubMed
Close
,
Glenn S. DiskinNASA Langley Research Center, Hampton, Virginia;

Search for other papers by Glenn S. Diskin in
Current site
Google Scholar
PubMed
Close
,
Maximilian DollnerUniversity of Vienna, Vienna, Austria;

Search for other papers by Maximilian Dollner in
Current site
Google Scholar
PubMed
Close
,
James W. ElkinsNOAA Global Monitoring Laboratory, Boulder, Colorado;

Search for other papers by James W. Elkins in
Current site
Google Scholar
PubMed
Close
,
Arlene M. FioreColumbia University, Palisades, New York;

Search for other papers by Arlene M. Fiore in
Current site
Google Scholar
PubMed
Close
,
Clare M. FlynnUniversity of California, Irvine, Irvine, California;

Search for other papers by Clare M. Flynn in
Current site
Google Scholar
PubMed
Close
,
Hao GuoUniversity of California, Irvine, Irvine, California;

Search for other papers by Hao Guo in
Current site
Google Scholar
PubMed
Close
,
Samuel R. HallNational Center for Atmospheric Research, Boulder, Colorado;

Search for other papers by Samuel R. Hall in
Current site
Google Scholar
PubMed
Close
,
Reem A. HannunNASA Goddard Space Flight Center, Greenbelt, and University of Maryland, Baltimore County, Baltimore, Maryland;

Search for other papers by Reem A. Hannun in
Current site
Google Scholar
PubMed
Close
,
Alan HillsNational Center for Atmospheric Research, Boulder, Colorado;

Search for other papers by Alan Hills in
Current site
Google Scholar
PubMed
Close
,
Eric J. HintsaNOAA Global Monitoring Laboratory, and University of Colorado Boulder, Boulder, Colorado;

Search for other papers by Eric J. Hintsa in
Current site
Google Scholar
PubMed
Close
,
Alma HodzicNational Center for Atmospheric Research, Boulder, Colorado;

Search for other papers by Alma Hodzic in
Current site
Google Scholar
PubMed
Close
,
Rebecca S. HornbrookNational Center for Atmospheric Research, Boulder, Colorado;

Search for other papers by Rebecca S. Hornbrook in
Current site
Google Scholar
PubMed
Close
,
L. Greg HueyGeorgia Institute of Technology, Atlanta, Georgia;

Search for other papers by L. Greg Huey in
Current site
Google Scholar
PubMed
Close
,
Jose L. JimenezUniversity of Colorado Boulder, Boulder, Colorado;

Search for other papers by Jose L. Jimenez in
Current site
Google Scholar
PubMed
Close
,
Ralph F. KeelingScripps Institution of Oceanography, La Jolla, California;

Search for other papers by Ralph F. Keeling in
Current site
Google Scholar
PubMed
Close
,
Michelle J. KimCalifornia Institute of Technology, Pasadena, California;

Search for other papers by Michelle J. Kim in
Current site
Google Scholar
PubMed
Close
,
Agnieszka KupcNOAA Chemical Sciences Laboratory, Boulder, Colorado, and University of Vienna, Vienna, Austria;

Search for other papers by Agnieszka Kupc in
Current site
Google Scholar
PubMed
Close
,
Forrest LaceyNational Center for Atmospheric Research, Boulder, Colorado;

Search for other papers by Forrest Lacey in
Current site
Google Scholar
PubMed
Close
,
Leslie R. LaitNASA Goddard Space Flight Center, Greenbelt, and Science Systems and Applications, Inc., Lanham, Maryland;

Search for other papers by Leslie R. Lait in
Current site
Google Scholar
PubMed
Close
,
Jean-Francois LamarqueNational Center for Atmospheric Research, Boulder, Colorado;

Search for other papers by Jean-Francois Lamarque in
Current site
Google Scholar
PubMed
Close
,
Junhua LiuNASA Goddard Space Flight Center, Greenbelt, and Universities Space Research Association, Columbia, Maryland;

Search for other papers by Junhua Liu in
Current site
Google Scholar
PubMed
Close
,
Kathryn McKainNOAA Global Monitoring Laboratory, and University of Colorado Boulder, Boulder, Colorado;

Search for other papers by Kathryn McKain in
Current site
Google Scholar
PubMed
Close
,
Simone MeinardiUniversity of California, Irvine, Irvine, California;

Search for other papers by Simone Meinardi in
Current site
Google Scholar
PubMed
Close
,
David O. MillerThe Pennsylvania State University, University Park, Pennsylvania;

Search for other papers by David O. Miller in
Current site
Google Scholar
PubMed
Close
,
Stephen A. MontzkaNOAA Global Monitoring Laboratory, Boulder, Colorado;

Search for other papers by Stephen A. Montzka in
Current site
Google Scholar
PubMed
Close
,
Fred L. MooreNOAA Global Monitoring Laboratory, and University of Colorado Boulder, Boulder, Colorado;

Search for other papers by Fred L. Moore in
Current site
Google Scholar
PubMed
Close
,
Eric J. MorganScripps Institution of Oceanography, La Jolla, California;

Search for other papers by Eric J. Morgan in
Current site
Google Scholar
PubMed
Close
,
Daniel M. MurphyNOAA Chemical Sciences Laboratory, Boulder, Colorado;

Search for other papers by Daniel M. Murphy in
Current site
Google Scholar
PubMed
Close
,
Lee T. MurrayUniversity of Rochester, Rochester, New York

Search for other papers by Lee T. Murray in
Current site
Google Scholar
PubMed
Close
,
Benjamin A. NaultUniversity of Colorado Boulder, Boulder, Colorado;

Search for other papers by Benjamin A. Nault in
Current site
Google Scholar
PubMed
Close
,
J. Andrew NeumanNOAA Chemical Sciences Laboratory, and University of Colorado Boulder, Boulder, Colorado;

Search for other papers by J. Andrew Neuman in
Current site
Google Scholar
PubMed
Close
,
Louis NguyenNASA Langley Research Center, Hampton, Virginia;

Search for other papers by Louis Nguyen in
Current site
Google Scholar
PubMed
Close
,
Yenny GonzalezHarvard University, Cambridge, Massachusetts;

Search for other papers by Yenny Gonzalez in
Current site
Google Scholar
PubMed
Close
,
Andrew RollinsNOAA Chemical Sciences Laboratory, Boulder, Colorado;

Search for other papers by Andrew Rollins in
Current site
Google Scholar
PubMed
Close
,
Karen RosenlofNOAA Chemical Sciences Laboratory, Boulder, Colorado;

Search for other papers by Karen Rosenlof in
Current site
Google Scholar
PubMed
Close
,
Maryann SargentHarvard University, Cambridge, Massachusetts;

Search for other papers by Maryann Sargent in
Current site
Google Scholar
PubMed
Close
,
Gregory SchillNOAA Chemical Sciences Laboratory, and University of Colorado Boulder, Boulder, Colorado;

Search for other papers by Gregory Schill in
Current site
Google Scholar
PubMed
Close
,
Joshua P. SchwarzNOAA Chemical Sciences Laboratory, Boulder, Colorado;

Search for other papers by Joshua P. Schwarz in
Current site
Google Scholar
PubMed
Close
,
Jason M. St. ClairNASA Goddard Space Flight Center, Greenbelt, and University of Maryland, Baltimore County, Baltimore, Maryland;

Search for other papers by Jason M. St. Clair in
Current site
Google Scholar
PubMed
Close
,
Stephen D. SteenrodNASA Goddard Space Flight Center, Greenbelt, and Universities Space Research Association, Columbia, Maryland;

Search for other papers by Stephen D. Steenrod in
Current site
Google Scholar
PubMed
Close
,
Britton B. StephensNational Center for Atmospheric Research, Boulder, Colorado;

Search for other papers by Britton B. Stephens in
Current site
Google Scholar
PubMed
Close
,
Susan E. StrahanNASA Goddard Space Flight Center, Greenbelt, and Universities Space Research Association, Columbia, Maryland;

Search for other papers by Susan E. Strahan in
Current site
Google Scholar
PubMed
Close
,
Sarah A. StrodeNASA Goddard Space Flight Center, Greenbelt, and Universities Space Research Association, Columbia, Maryland;

Search for other papers by Sarah A. Strode in
Current site
Google Scholar
PubMed
Close
,
Colm SweeneyNOAA Global Monitoring Laboratory, Boulder, Colorado;

Search for other papers by Colm Sweeney in
Current site
Google Scholar
PubMed
Close
,
Alexander B. ThamesThe Pennsylvania State University, University Park, Pennsylvania;

Search for other papers by Alexander B. Thames in
Current site
Google Scholar
PubMed
Close
,
Kirk UllmannNational Center for Atmospheric Research, Boulder, Colorado;

Search for other papers by Kirk Ullmann in
Current site
Google Scholar
PubMed
Close
,
Nicholas WagnerNOAA Chemical Sciences Laboratory, and University of Colorado Boulder, Boulder, Colorado;

Search for other papers by Nicholas Wagner in
Current site
Google Scholar
PubMed
Close
,
Rodney WeberGeorgia Institute of Technology, Atlanta, Georgia;

Search for other papers by Rodney Weber in
Current site
Google Scholar
PubMed
Close
,
Bernadett WeinzierlUniversity of Vienna, Vienna, Austria;

Search for other papers by Bernadett Weinzierl in
Current site
Google Scholar
PubMed
Close
,
Paul O. WennbergCalifornia Institute of Technology, Pasadena, California;

Search for other papers by Paul O. Wennberg in
Current site
Google Scholar
PubMed
Close
,
Christina J. WilliamsonNOAA Chemical Sciences Laboratory, and University of Colorado Boulder, Boulder, Colorado;

Search for other papers by Christina J. Williamson in
Current site
Google Scholar
PubMed
Close
,
Glenn M. WolfeNASA Goddard Space Flight Center, Greenbelt, Maryland;

Search for other papers by Glenn M. Wolfe in
Current site
Google Scholar
PubMed
Close
, and
Linghan ZengGeorgia Institute of Technology, Atlanta, Georgia;

Search for other papers by Linghan Zeng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This article provides an overview of the NASA Atmospheric Tomography (ATom) mission and a summary of selected scientific findings to date. ATom was an airborne measurements and modeling campaign aimed at characterizing the composition and chemistry of the troposphere over the most remote regions of the Pacific, Southern, Atlantic, and Arctic Oceans, and examining the impact of anthropogenic and natural emissions on a global scale. These remote regions dominate global chemical reactivity and are exceptionally important for global air quality and climate. ATom data provide the in situ measurements needed to understand the range of chemical species and their reactions, and to test satellite remote sensing observations and global models over large regions of the remote atmosphere. Lack of data in these regions, particularly over the oceans, has limited our understanding of how atmospheric composition is changing in response to shifting anthropogenic emissions and physical climate change. ATom was designed as a global-scale tomographic sampling mission with extensive geographic and seasonal coverage, tropospheric vertical profiling, and detailed speciation of reactive compounds and pollution tracers. ATom flew the NASA DC-8 research aircraft over four seasons to collect a comprehensive suite of measurements of gases, aerosols, and radical species from the remote troposphere and lower stratosphere on four global circuits from 2016 to 2018. Flights maintained near-continuous vertical profiling of 0.15–13-km altitudes on long meridional transects of the Pacific and Atlantic Ocean basins. Analysis and modeling of ATom data have led to the significant early findings highlighted here.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chelsea R. Thompson, chelsea.thompson@noaa.gov

CURRENT AFFILIATIONS: Columbia University, Palisades, New York;

Stockholm University, Stockholm, Sweden;

NOAA/Chemical Sciences Laboratory, and University of Colorado Boulder, Boulder, Colorado;

Aerodyne Research Inc., Billerica, Massachusetts

Abstract

This article provides an overview of the NASA Atmospheric Tomography (ATom) mission and a summary of selected scientific findings to date. ATom was an airborne measurements and modeling campaign aimed at characterizing the composition and chemistry of the troposphere over the most remote regions of the Pacific, Southern, Atlantic, and Arctic Oceans, and examining the impact of anthropogenic and natural emissions on a global scale. These remote regions dominate global chemical reactivity and are exceptionally important for global air quality and climate. ATom data provide the in situ measurements needed to understand the range of chemical species and their reactions, and to test satellite remote sensing observations and global models over large regions of the remote atmosphere. Lack of data in these regions, particularly over the oceans, has limited our understanding of how atmospheric composition is changing in response to shifting anthropogenic emissions and physical climate change. ATom was designed as a global-scale tomographic sampling mission with extensive geographic and seasonal coverage, tropospheric vertical profiling, and detailed speciation of reactive compounds and pollution tracers. ATom flew the NASA DC-8 research aircraft over four seasons to collect a comprehensive suite of measurements of gases, aerosols, and radical species from the remote troposphere and lower stratosphere on four global circuits from 2016 to 2018. Flights maintained near-continuous vertical profiling of 0.15–13-km altitudes on long meridional transects of the Pacific and Atlantic Ocean basins. Analysis and modeling of ATom data have led to the significant early findings highlighted here.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Chelsea R. Thompson, chelsea.thompson@noaa.gov

CURRENT AFFILIATIONS: Columbia University, Palisades, New York;

Stockholm University, Stockholm, Sweden;

NOAA/Chemical Sciences Laboratory, and University of Colorado Boulder, Boulder, Colorado;

Aerodyne Research Inc., Billerica, Massachusetts

Supplementary Materials

    • Supplemental Materials (PDF 6.08 MB)
Save