• Ansari, S. , and Coauthors, 2018: Unlocking the potential of NEXRAD data through NOAA’s big data partnership. Bull. Amer. Meteor. Soc., 99, 189204, https://doi.org/10.1175/BAMS-D-16-0021.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Baldwin, M. E. , J. S. Kain , and S. Lakshmivarahan , 2005: Development of an automated classification procedure for rainfall systems. Mon. Wea. Rev., 133, 844862, https://doi.org/10.1175/MWR2892.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G. , and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, https://doi.org/10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cavanaugh, D. E. , and J. A. Schultz , 2012: WSR-88D signatures associated with one inch hail in the Southern Plains. Electron. J. Oper. Meteor., 13, 114.

    • Search Google Scholar
    • Export Citation
  • Cintineo, J. L. , and Coauthors, 2018: The NOAA/CIMSS ProbSevere model: Incorporation of total lightning and validation. Wea. Forecasting, 33, 331345, https://doi.org/10.1175/WAF-D-17-0099.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clough, K. N. , S. S. Williams , and K. L. Ortega , 2021: Developing a Multi-Radar, Multi-Sensor storm database using the multi-year reanalysis of remotely sensed storms. 20th Annual Student Conf., Virtual, Amer. Meteor. Soc., 21, https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/385058.

    • Search Google Scholar
    • Export Citation
  • Davis, C. A. , B. G. Brown , and R. G. Bullock , 2006: Object-based verification of precipitation Forecasts. Part I: Methodology and application to mesoscale rain areas. Mon. Wea. Rev., 134, 17721784, https://doi.org/10.1175/MWR3145.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Douglas, Z. A. , S. S. Williams , and K. L. Ortega , 2021: Developing verification probabilities for NWS warning polygons using MRMS. 20th Annual Student Conf., Virtual, Amer. Meteor. Soc., 132, https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/385031.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J. , and D. S. Zrnić , 2006: Doppler Radar and Weather Observations. Academic Press, 592 pp.

  • Ebert, E. E. , and J. L. McBride , 2000: Verification of precipitation in weather systems: Determination of systematic errors. J. Hydrol., 239, 179202, https://doi.org/10.1016/S0022-1694(00)00343-7.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Escamilla, J. E. A. , S. S. Williams , and K. L. Ortega , 2020: MRMS-based hail sizing and classification using different large databases. 19th Conf. on Artificial Intelligence for Environmental Science, Boston, MA, Amer. Meteor. Soc., 363192, https://ams.confex.com/ams/2020Annual/webprogram/Paper363192.html.

    • Search Google Scholar
    • Export Citation
  • Ferguson, C. K. , S. S. Williams , and K. L. Ortega , 2021: Developing a general storm climatology using 1-hourly swaths of MRMS echo tops. 20th Annual Student Conf., Virtual, Amer. Meteor. Soc., 17, https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/385028.

    • Search Google Scholar
    • Export Citation
  • Gallo, B. T. , and Coauthors, 2019: Initial development and testing of a convection-allowing model scorecard. Bull. Amer. Meteor. Soc., 100, ES367ES384, https://doi.org/10.1175/BAMS-D-18-0218.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Greene, D. R. , and R. A. Clark , 1972: Vertically integrated liquid water—A new analysis tool. Mon. Wea. Rev., 100, 548552, https://doi.org/10.1175/1520-0493(1972)100<0548:VILWNA>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Jing, Z. , and G. Wiener , 1993: Two-dimensional dealiasing of Doppler velocities. J. Atmos. Oceanic Technol., 10, 798808, https://doi.org/10.1175/1520-0426(1993)010<0798:TDDODV>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Johnson, A. , X. Wang , Y. Wang , A. Reinhart , A. J. Clark , and I. L. Jirak , 2020: Neighborhood- and object-based probabilistic verification of the OU MAP ensemble forecasts during 2017 and 2018 hazardous weather testbeds. Wea. Forecasting, 35, 169191, https://doi.org/10.1175/WAF-D-19-0060.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kingfield, D. M. , K. L. Ortega , and T. C. Meyer , 2017: A terrestrial multi-radar echo top climatology of the continental United States derived from MYRORSS: 2000–2012. 18th Conf. on Aviation, Range, and Aerospace Meteorology, Seattle, WA, Amer. Meteor. Soc., 14.4, https://ams.confex.com/ams/97Annual/webprogram/Paper302944.html.

    • Search Google Scholar
    • Export Citation
  • Lagerquist, R. , A. McGovern , and T. Smith , 2017: Machine learning for real-time prediction of damaging straight-line convective wind. Wea. Forecasting, 32, 21752193, https://doi.org/10.1175/WAF-D-17-0038.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lagerquist, R. , A. McGovern , C. R. Homeyer , D. J. Gange II , and T. Smith , 2020: Deep learning on three-dimensional multiscale data for next-hour tornado prediction. Mon. Wea. Rev., 148, 28372861, https://doi.org/10.1175/MWR-D-19-0372.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V. , T. M. Smith , K. Hondl , G. J. Stumpf , and A. Witt , 2006: A real-time, three-dimensional, rapidly updating, heterogeneous radar merger technique for reflectivity, velocity, and derived products. Wea. Forecasting, 21, 802823, https://doi.org/10.1175/WAF942.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V. , T. M. Smith , G. J. Stumpf , and K. D. Hondl , 2007a: The Warning Decision Support System–Integrated Information. Wea. Forecasting, 22, 596612, https://doi.org/10.1175/WAF1009.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V. , A. Fritz , T. M. Smith , K. Hondl , and G. J. Stumpf , 2007b: An automated technique to quality control radar reflectivity data. J. Appl. Meteor., 46, 288305, https://doi.org/10.1175/JAM2460.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V. , J. Zhang , and K. Howard , 2010: A technique to censor biological echoes in radar reflectivity data. J. Appl. Meteor. Climatol., 49, 453462, https://doi.org/10.1175/2009JAMC2255.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V. , M. Miller , and T. Smith , 2013a: Quality control of accumulated fields by applying spatial and temporal constraints. J. Atmos. Oceanic Technol., 30, 745758, https://doi.org/10.1175/JTECH-D-12-00128.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lakshmanan, V. , T. M. Smith , C. K. Potvin , and D. Preignitz , 2013b: An improved method for estimating radar echo-top height. Wea. Forecasting, 28, 481488, https://doi.org/10.1175/WAF-D-12-00084.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • LaRoche, K. , S. S. Williams , K. L. Ortega , A. E. Reinhart , M. C. Mahalik , B. R. Smith , and T. M. Smith , 2018: Using the MYRORSS database to create a rotating storms climatology. 29th Conf. on Severe Local Storms, Stowe, VT, Amer. Meteor. Soc., 4, https://ams.confex.com/ams/29SLS/webprogram/Paper348649.html.

    • Search Google Scholar
    • Export Citation
  • Layne, G. W. , K. L. Ortega , H. E. Brooks , and T. M. Smith , 2014: A radar-based hail climatology for the CONUS (2000–2011). 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 144, https://ams.confex.com/ams/27SLS/webprogram/Paper255327.html.

    • Search Google Scholar
    • Export Citation
  • Mahalik, M. , B. Smith , K. Elmore , D. Kingfield , K. Ortega , and T. Smith , 2019: Estimates of gradients in radar moments using a linear least-squares derivative technique. Wea. Forecasting, 34, 415434, https://doi.org/10.1175/WAF-D-18-0095.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meadows, D. K. , K. L. Ortega , and S. S. Williams , 2021: Developing a hail climatology using MRMS swaths and machine learning. 20th Annual Student Conf., Virtual, Amer. Meteor. Soc., 18, https://ams.confex.com/ams/101ANNUAL/meetingapp.cgi/Paper/385030.

    • Search Google Scholar
    • Export Citation
  • Meyer, T. C. , K. M. Calhoun , D. M. Kingfield , and C. Karstens , 2017: Using random forest to generate probability of cloud-to-ground lightning probabilities. 38th Conf. on Radar Meteorology, Chicago, IL, 5B.6, https://ams.confex.com/ams/38RADAR/meetingapp.cgi/Paper/320597.

    • Search Google Scholar
    • Export Citation
  • NOAA/NWS/ROC, 1991: NOAA Next Generation Radar (NEXRAD) Level 2 Base Data. NOAA National Centers for Environmental Information, accessed 7 December 2020, https://doi.org/10.7289/V5W9574V.

    • Search Google Scholar
    • Export Citation
  • Potvin, C. K. , and Coauthors, 2019: Systematic comparison of convection-allowing models during the 2017 NOAA HWT spring forecasting experiment. Wea. Forecasting, 34, 13951416, https://doi.org/10.1175/WAF-D-19-0056.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rew, R. K. , G. P. Davis , S. Emmerson , and H. Davies , 2015: NetCDF user’s guide for C: An interface for data access. Unidata, UCAR, www.unidata.ucar.edu/software/netcdf/guide_toc.html.

    • Search Google Scholar
    • Export Citation
  • Rosseau, D. , K. L. Ortega , A. E. Reinhart , and H. Obermeier , 2017: A multi-radar, multi-sensor hail climatology for the CONUS: 2000-2011. Special Symp. on Severe Local Storms: Observation Needs to Advance Research, Prediction, and Communication, Seattle, WA, Amer. Meteor. Soc., 930, https://ams.confex.com/ams/97Annual/webprogram/Paper312563.html.

    • Search Google Scholar
    • Export Citation
  • Skinner, P. S. , and Coauthors, 2018: Object-based verification of a prototype warn-on-forecast system. Wea. Forecasting, 33, 12251250, https://doi.org/10.1175/WAF-D-18-0020.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, B. R. , and K. L. Ortega , 2017: An updated radar-based storm rotation climatology for the CONUS. 38th Conf. on Radar Meteorology, Chicago, IL, Amer. Meteor. Soc., 178, https://ams.confex.com/ams/38RADAR/webprogram/Paper320979.html.

    • Search Google Scholar
    • Export Citation
  • Smith, B. R. , K. L. Ortega , A. E. Reinhart , M. C. Mahalik , and T. M. Smith , 2017: A reflectivity climatology study of the contiguous United States using the Multi-Year Reanalysis of Remotely Sensed Storms (MYRORSS). 28th Conf. on Weather Forecasting/24th Conf. on Numerical Weather Prediction, Seattle, WA, Amer. Meteor. Soc., 99, https://ams.confex.com/ams/97Annual/webprogram/Paper313436.html.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M. , and K. L. Elmore , 2004: The use of radial velocity derivatives to diagnose rotation and divergence. 11th Conf. on Aviation, Range, and Aerospace, Hyannis, MA, Amer. Meteor. Soc., P5.6, https://ams.confex.com/ams/pdfpapers/81827.pdf.

    • Search Google Scholar
    • Export Citation
  • Smith, T. M. , and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) severe weather and aviation products. Bull. Amer. Meteor. Soc., 97, 16171630, https://doi.org/10.1175/BAMS-D-14-00173.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tait, C. , V. Passetti , and S. Abelman , 2015: Federal Aviation Administration Multi-Radar Multi-Sensor System research to operations accomplishments. 17th Conf. on Aviation, Range, and Aerospace Meteorology, Phoenix, AZ, Amer. Meteor. Soc., 312, https://ams.confex.com/ams/95Annual/webprogram/Paper258567.html.

    • Search Google Scholar
    • Export Citation
  • Tang, L. , J. Zhang , Y. Wang , and K. Howard , 2011: Identification of biological and anomalous propagation echoes in weather radar observations—An imaging processing approach. 35th Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor. Soc., 123, https://ams.confex.com/ams/35Radar/webprogram/Paper191296.html.

    • Search Google Scholar
    • Export Citation
  • Torres, S. M. , and C. D. Curtis , 2007: Initial implementation of super-resolution data on the NEXRAD network. 23rd Conf. on IIPS, San Antonio, TX. Amer. Meteor. Soc., 5B.10, https://ams.confex.com/ams/87ANNUAL/techprogram/paper_116240.htm.

    • Search Google Scholar
    • Export Citation
  • Williams, S. S. , and K. L. Ortega , 2019: Developing a machine learning–based hail climatology using the SHAVE and MYRORSS databases. Fifth Symp. on High Performance Computing for Weather, Water, and Climate, Phoenix, AZ, Amer. Meteor. Soc., 327, https://ams.confex.com/ams/2019Annual/webprogram/Paper351515.html.

    • Search Google Scholar
    • Export Citation
  • Williams, S. S. , K. L. Ortega , D. M. Kingfield , and T. M. Smith , 2014: A radar-based storm rotation climatology for the CONUS (2000–2011). 27th Conf. on Severe Local Storms, Madison, WI, Amer. Meteor. Soc., 146, https://ams.confex.com/ams/27SLS/webprogram/Paper255332.html.

    • Search Google Scholar
    • Export Citation
  • Williams, S. S. , K. L. Ortega , A. E. Reinhart , and T. M. Smith , 2018: A climatological study of hail occurrence using the MRMS MESH product. 29th Conf. on Severe Local Storms, Stowe, VT, Amer. Meteor. Soc., 13A.1, https://ams.confex.com/ams/29SLS/webprogram/Paper348561.html.

    • Search Google Scholar
    • Export Citation
  • Witt, A. , M. D. Eilts , G. J. Stumpf , J. T. Johnson , E. D. Mitchell , and K. W. Thomas , 1998: An enhanced hail detection algorithm for the WSR-88D. Wea. Forecasting, 13, 286303, https://doi.org/10.1175/1520-0434(1998)013<0286:AEHDAF>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, J. , and Coauthors, 2016: Multi-Radar Multi-Sensor (MRMS) quantitative precipitation estimation: Initial operating capabilities. Bull. Amer. Meteor. Soc., 97, 621638, https://doi.org/10.1175/BAMS-D-14-00174.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 6 6 0
Full Text Views 241 241 86
PDF Downloads 8588 8588 8460

Comprehensive Radar Data for the Contiguous United States: Multi-Year Reanalysis of Remotely Sensed Storms

View More View Less
  • 1 Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, and NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma;
  • | 2 NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

The Multi-Year Reanalysis of Remotely Sensed Storms (MYRORSS) dataset blends radar data from the WSR-88D network and Near-Storm Environmental (NSE) model analyses using the Multi-Radar Multi-Sensor (MRMS) framework. The MYRORSS dataset uses the WSR-88D archive starting in 1998–2011, processing all valid single-radar volumes to produce a seamless three-dimensional reflectivity volume over the entire contiguous United States with an approximate 5-min update frequency. The three-dimensional grid has an approximate 1 km × 1 km horizontal dimension and is on a stretched vertical grid that extends to 20 km MSL with a maximal vertical spacing of 1 km. Several reflectivity-derived, severe-storm-related products are also produced, which leverage the ability to merge the MRMS and NSE data. Two Doppler velocity-derived azimuthal shear layer maximum products are produced at a higher horizontal resolution of approximately 0.5 km × 0.5 km. The initial period of record for the dataset is 1998–2011. The dataset underwent intensive manual quality control to ensure that all available and valid data were included while excluding highly problematic radar volumes that were a negligible percentage of the overall dataset, but which caused large data errors in some cases. This dataset has applications toward radar-based climatologies, postevent analysis, machine learning applications, model verification, and warning improvements. Details of the manual quality control process are included and examples of some of these applications are presented.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kiel L. Ortega, kiel.ortega@noaa.gov

Abstract

The Multi-Year Reanalysis of Remotely Sensed Storms (MYRORSS) dataset blends radar data from the WSR-88D network and Near-Storm Environmental (NSE) model analyses using the Multi-Radar Multi-Sensor (MRMS) framework. The MYRORSS dataset uses the WSR-88D archive starting in 1998–2011, processing all valid single-radar volumes to produce a seamless three-dimensional reflectivity volume over the entire contiguous United States with an approximate 5-min update frequency. The three-dimensional grid has an approximate 1 km × 1 km horizontal dimension and is on a stretched vertical grid that extends to 20 km MSL with a maximal vertical spacing of 1 km. Several reflectivity-derived, severe-storm-related products are also produced, which leverage the ability to merge the MRMS and NSE data. Two Doppler velocity-derived azimuthal shear layer maximum products are produced at a higher horizontal resolution of approximately 0.5 km × 0.5 km. The initial period of record for the dataset is 1998–2011. The dataset underwent intensive manual quality control to ensure that all available and valid data were included while excluding highly problematic radar volumes that were a negligible percentage of the overall dataset, but which caused large data errors in some cases. This dataset has applications toward radar-based climatologies, postevent analysis, machine learning applications, model verification, and warning improvements. Details of the manual quality control process are included and examples of some of these applications are presented.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Kiel L. Ortega, kiel.ortega@noaa.gov
Save