• Abatzoglou, J. T., and A. P. Williams, 2016: Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA, 113, 11 77011 775, https://doi.org/10.1073/pnas.1607171113.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Allen, C. D., D. D. Breshears, and N. G. McDowell, 2015: On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere, 6 (8), 155, https://doi.org/10.1890/ES15-00203.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annan, J. D., and J. C. Hargreaves, 2011: Understanding the CMIP3 multimodel ensemble. J. Climate, 24, 45294538, https://doi.org/10.1175/2011JCLI3873.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Annan, J. D., and J. C. Hargreaves, 2017: On the meaning of independence in climate science. Earth Syst. Dyn., 8, 211224, https://doi.org/10.5194/esd-8-211-2017.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ashley, W. S., A. M. Haberlie, and V. A. Gensini, 2020: Reduced frequency and size of late-twenty-first-century snowstorms over North America. Nat. Climate Change, 10, 539544, https://doi.org/10.1038/s41558-020-0774-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bach, A. F., G. Schrier, L. A. Melsen, A. M. G. K. Tank, and A. J. Teuling, 2018: Widespread and accelerated decrease of observed mean and extreme snow depth over Europe. Geophys. Res. Lett., 45, 122312122319, https://doi.org/10.1029/2018GL079799.

    • Search Google Scholar
    • Export Citation
  • Barnett, T. P., J. C. Adam, and D. P. Lettenmaier, 2005: Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, 438, 303309, https://doi.org/10.1038/nature04141.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berg, N., and A. Hall, 2017: Anthropogenic warming impacts on California snowpack during drought. Geophys. Res. Lett., 44, 25112518, https://doi.org/10.1002/2016GL072104.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Berghuijs, W. R., R. A. Woods, and M. Hrachowitz, 2014: A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Climate Change, 4, 583586, https://doi.org/10.1038/nclimate2246.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bintanja, R., and O. Andry, 2017: Towards a rain-dominated Arctic. Nat. Climate Change, 7, 263267, https://doi.org/10.1038/nclimate3240.

  • Brown, R., and B. Brasnett, 2010: Canadian Meteorological Centre (CMC) Daily Snow Depth Analysis Data, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 17 February 2021, https://doi.org/10.5067/W9FOYWH0EQZ3.

    • Crossref
    • Export Citation
  • Broxton, P., X. Zeng, and N. Dawson, 2019: Daily 4 km gridded SWE and snow depth from assimilated in-situ and modeled data over the conterminous US, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 14 December 2020, https://doi.org/10.5067/0GGPB220EX6A.

    • Crossref
    • Export Citation
  • Cayan, D. R., S. A. Kammerdiener, M. D. Dettinger, J. M. Caprio, and D. H. Peterson, 2001: Changes in the onset of spring in the western United States. Bull. Amer. Meteor. Soc., 82, 399416, https://doi.org/10.1175/1520-0477(2001)082<0399:CITOOS>2.3.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cook, B. I., A. P. Williams, J. S. Mankin, R. Seager, J. E. Smerdon, and D. Singh, 2018: Revisiting the leading drivers of Pacific coastal drought variability in the contiguous United States. J. Climate, 31, 2543, https://doi.org/10.1175/JCLI-D-17-0172.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Cooper, M. G., A. W. Nolin, and M. Safeeq, 2016: Testing the recent snow drought as an analog for climate warming sensitivity of Cascades snowpacks. Environ. Res. Lett., 11, 084009, https://doi.org/10.1088/1748-9326/11/8/084009.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dierauer, J. R., D. M. Allen, and P. H. Whitfield, 2019: Snow drought risk and susceptibility in the western United States and southwestern Canada. Water Resour. Res., 55, 30763091, https://doi.org/10.1029/2018WR023229.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Dietz, A. J., C. Kuenzer, U. Gessner, and S. Dech, 2012: Remote sensing of snow – A review of available methods. Int. J. Remote Sens., 33, 40944134, https://doi.org/10.1080/01431161.2011.640964.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Diffenbaugh, N. S., M. Scherer, and M. Ashfaq, 2013: Response of snow-dependent hydrologic extremes to continued global warming. Nat. Climate Change, 3, 379384, https://doi.org/10.1038/nclimate1732.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, version 2 (MERRA-2). J. Climate, 30, 54195454, https://doi.org/10.1175/JCLI-D-16-0758.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Gilbert, G. K., 1884: Finley’s Tornado predictions. Amer. Meteor. J., 1, 166172.

  • GRDC, 2020: Major River Basins of the World. 2nd ed. Global Runoff Data Centre, www.bafg.de/GRDC/EN/02_srvcs/22_gslrs/221_MRB/riverbasins_node.html.

    • Search Google Scholar
    • Export Citation
  • Gringorten, I. I., 1963: A plotting rule for extreme probability paper. J. Geophys. Res., 68, 813814, https://doi.org/10.1029/JZ068i003p00813.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., T. R. Karl, and R. W. Knight, 1994: Observed impact of snow cover on the heat balance and the rise of continental spring temperatures. Science, 263, 198200, https://doi.org/10.1126/science.263.5144.198.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hall, A., X. Qu, and J. D. Neelin, 2008: Improving predictions of summer climate change in the United States. Geophys. Res. Lett., 35, L01702, https://doi.org/10.1029/2007GL032012.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harley, G. L., R. S. Maxwell, B. A. Black, and M. F. Bekker, 2020: A multi-century, tree-ring-derived perspective of the North Cascades (USA) 2014–2016 snow drought. Climatic Change, 162, 127143, https://doi.org/10.1007/s10584-020-02719-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harpold, A. A., and N. P. Molotch, 2015: Sensitivity of soil water availability to changing snowmelt timing in the western U.S. Geophys. Res. Lett., 42, 80118020, https://doi.org/10.1002/2015GL065855.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Harpold, A. A., M. D. Dettinger, and S. Rajagopal, 2017: Defining snow drought and why it matters. Eos, 98, https://doi.org/10.1029/2017EO068775.

    • Search Google Scholar
    • Export Citation
  • Hartmann, H., and Coauthors, 2018: Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol., 218, 1528, https://doi.org/10.1111/nph.15048.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hatchett, B. J., and D. J. McEvoy, 2017: Exploring the origins of snow drought in the northern Sierra Nevada, California. Earth Interact., 22, https://doi.org/10.1175/EI-D-17-0027.1.

    • Search Google Scholar
    • Export Citation
  • Henderson, G. R., Y. Peings, J. C. Furtado, and P. J. Kushner, 2018: Snow–atmosphere coupling in the Northern Hemisphere. Nat. Climate Change, 8, 954963, https://doi.org/10.1038/s41558-018-0295-6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hodgkins, G. A., and R. W. Dudley, 2006: Changes in late-winter snowpack depth, water equivalent, and density in Maine, 1926–2004. Hydrol. Processes, 20, 741751, https://doi.org/10.1002/hyp.6111.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Hsiang, S., 2013: Visually-weighted regression. SSRN Scholarly Paper ID 2265501, Social Science Research Network, 10 pp., https://doi.org/10.2139/ssrn.2265501.

    • Crossref
    • Export Citation
  • Huning, L. S., and A. AghaKouchak, 2018: Mountain snowpack response to different levels of warming. Proc. Natl. Acad. Sci. USA, 115, 102932102937, https://doi.org/10.1073/pnas.1805953115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Huning, L. S., and A. AghaKouchak, 2020: Global snow drought hot spots and characteristics. Proc. Natl. Acad. Sci. USA, 117, 192753192759, https://doi.org/10.1073/pnas.1915921117.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kapnick, S. B., and T. L. Delworth, 2013: Controls of global snow under a changed climate. J. Climate, 26, 55375562, https://doi.org/10.1175/JCLI-D-12-00528.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kim, R. S., and Coauthors, 2021: Snow Ensemble Uncertainty Project (SEUP): Quantification of snow water equivalent uncertainty across North America via ensemble land surface modeling. Cryosphere, 15, 771791, https://doi.org/10.5194/tc-15-771-2021.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kobayashi, S., and Coauthors, 2015: The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 548, https://doi.org/10.2151/jmsj.2015-001.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolstad, E. W., 2017: Causal pathways for temperature predictability from snow depth. J. Climate, 30, 96519663, https://doi.org/10.1175/JCLI-D-17-0280.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Koster, R. D., S. P. P. Mahanama, B. Livneh, D. P. Lettenmaier, and R. H. Reichle, 2010: Skill in streamflow forecasts derived from large-scale estimates of soil moisture and snow. Nat. Geosci., 3, 613616, https://doi.org/10.1038/ngeo944.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Krasting, J. P., A. J. Broccoli, K. W. Dixon, and J. R. Lanzante, 2013: Future changes in Northern Hemisphere snowfall. J. Climate, 26, 78137828, https://doi.org/10.1175/JCLI-D-12-00832.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Livneh, B., and A. M. Badger, 2020: Drought less predictable under declining future snowpack. Nat. Climate Change, 10, 452–458, https://doi.org/10.1038/s41558-020-0754-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Luojus, K., J. Pulliainen, M. Takala, J. Lemmetyinen, and M. Moisander, 2020: GlobSnow v3.0 snow water equivalent (SWE). PANGAEA, accessed 14 December 2020, https://doi.org/10.1594/PANGAEA.911944.

    • Crossref
    • Export Citation
  • Mankin, J. S., and N. S. Diffenbaugh, 2015: Influence of temperature and precipitation variability on near-term snow trends. Climate Dyn., 45, 10991116, https://doi.org/10.1007/s00382-014-2357-4.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mankin, J. S., D. Viviroli, D. Singh, A. Y. Hoekstra, and N. S. Diffenbaugh, 2015: The potential for snow to supply human water demand in the present and future. Environ. Res. Lett., 10, 114016, https://doi.org/10.1088/1748-9326/10/11/114016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mankin, J. S., R. Seager, J. E. Smerdon, B. I. Cook, and A. P. Williams, 2019: Mid-latitude freshwater availability reduced by projected vegetation responses to climate change. Nat. Geosci., 12, 983988, https://doi.org/10.1038/s41561-019-0480-x.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marshall, A. M., J. T. Abatzoglou, T. E. Link, and C. J. Tennant, 2019: Projected changes in interannual variability of peak snowpack amount and timing in the western United States. Geophys. Res. Lett., 46, 88828892, https://doi.org/10.1029/2019GL083770.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marty, C., A.-M. Tilg, and T. Jonas, 2017: Recent evidence of large-scale receding snow water equivalents in the European Alps. J. Hydrometeor., 18, 10211031, https://doi.org/10.1175/JHM-D-16-0188.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • McCabe, G. J., and M. D. Dettinger, 2002: Primary modes and predictability of year-to-year snowpack variations in the western United States from teleconnections with Pacific Ocean climate. J. Hydrometeor., 3, 1325, https://doi.org/10.1175/1525-7541(2002)003<0013:PMAPOY>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meira Neto, A. A., G.-Y. Niu, T. Roy, S. Tyler, and P. A. Troch, 2020: Interactions between snow cover and evaporation lead to higher sensitivity of streamflow to temperature. Commun. Earth Environ., 1, 56, https://doi.org/10.1038/s43247-020-00056-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Meromy, L., N. P. Molotch, T. E. Link, S. R. Fassnacht, and R. Rice, 2013: Subgrid variability of snow water equivalent at operational snow stations in the western USA. Hydrol. Processes, 27, 23832400, https://doi.org/10.1002/hyp.9355.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molotch, N. P., and R. C. Bales, 2006: SNOTEL representativeness in the Rio Grande headwaters on the basis of physiographics and remotely sensed snow cover persistence. Hydrol. Processes, 20, 723739, https://doi.org/10.1002/hyp.6128.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molotch, N. P., P. D. Brooks, S. P. Burns, M. Litvak, R. K. Monson, J. R. McConnell, and K. Musselman, 2009: Ecohydrological controls on snowmelt partitioning in mixed-conifer sub-alpine forests. Ecohydrology, 2, 129142, https://doi.org/10.1002/eco.48.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mortimer, C., L. Mudryk, C. Derksen, K. Luojus, R. Brown, R. Kelly, and M. Tedesco, 2020: Evaluation of long-term Northern Hemisphere snow water equivalent products. Cryosphere, 14, 15791594, https://doi.org/10.5194/tc-14-1579-2020.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., A. F. Hamlet, M. P. Clark, and D. P. Lettenmaier, 2005: Declining mountain snowpack in western North America. Bull. Amer. Meteor. Soc., 86, 3950, https://doi.org/10.1175/BAMS-86-1-39.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., and Coauthors, 2016: Perspectives on the causes of exceptionally low 2015 snowpack in the western United States. Geophys. Res. Lett., 43, 10 98010 988 , https://doi.org/10.1002/2016GL069965.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mote, P. W., S. Li, D. P. Lettenmaier, M. Xiao, and R. Engel, 2018: Dramatic declines in snowpack in the western US. npj Climate Atmos. Sci., 1, 2, https://doi.org/10.1038/s41612-018-0012-1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mudryk, L. R., C. Derksen, P. J. Kushner, and R. Brown, 2015: Characterization of Northern Hemisphere snow water equivalent datasets, 1981–2010. J. Climate, 28, 80378051, https://doi.org/10.1175/JCLI-D-15-0229.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Musselman, K. N., N. Addor, J. A. Vano, and N. P. Molotch, 2021: Winter melt trends portend widespread declines in snow water resources. Nat. Climate Change, 11, 418424, https://doi.org/10.1038/s41558-021-01014-9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • National Operational Hydrologic Remote Sensing Center, 2004: Snow Data Assimilation System (SNODAS) data products at NSIDC, version 1. National Snow and Ice Data Center, accessed 23 November 2020, https://doi.org/10.7265/N5TB14TC.

    • Crossref
    • Export Citation
  • Pagano, T., D. Garen, and S. Sorooshian, 2004: Evaluation of official western U.S. seasonal water supply outlooks, 1922–2002. J. Hydrometeor., 5, 896909, https://doi.org/10.1175/1525-7541(2004)005<0896:EOOWUS>2.0.CO;2.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and D. R. Cayan, 2013: The uneven response of different snow measures to human-induced climate warming. J. Climate, 26, 41484167, https://doi.org/10.1175/JCLI-D-12-00534.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and Coauthors, 2008: Attribution of declining western U.S. snowpack to human effects. J. Climate, 21, 64256444, https://doi.org/10.1175/2008JCLI2405.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Potopová, V., C. Boroneanţ, M. Možný, and J. Soukup, 2016: Driving role of snow cover on soil moisture and drought development during the growing season in the Czech Republic. Int. J. Climatol., 36, 37413758, https://doi.org/10.1002/joc.4588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • PRISM Climate Group, 2004: PRISM Climate Data. Oregon State University, http://prism.oregonstate.edu.

  • Pulliainen, J., and Coauthors, 2017: Early snowmelt significantly enhances boreal springtime carbon uptake. Proc. Natl. Acad. Sci. USA, 114, 11 08111 086 , https://doi.org/10.1073/pnas.1707889114.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pulliainen, J., and Coauthors, 2020: Patterns and trends of Northern Hemisphere snow mass from 1980 to 2018. Nature, 581, 294298, https://doi.org/10.1038/s41586-020-2258-0.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Qin, Y., and Coauthors, 2020: Agricultural risks from changing snowmelt. Nat. Climate Change, 10, 459465, https://doi.org/10.1038/s41558-020-0746-8.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, https://doi.org/10.1175/BAMS-85-3-381.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sabater, J. M., 2019: ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 27 August 2020, https://doi.org/10.24381/cds.e2161bac.

    • Crossref
    • Export Citation
  • Seneviratne, S. I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land–atmosphere coupling and climate change in Europe. Nature, 443, 205209, https://doi.org/10.1038/nature05095.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Siler, N., C. Proistosescu, and S. Po-Chedley, 2019: Natural variability has slowed the decline in western U.S. snowpack since the 1980s. Geophys. Res. Lett., 46, 346355, https://doi.org/10.1029/2018GL081080.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Smith, A. B., 2020: U.S. billion-dollar weather and climate disasters, 1980–present (NCEI Accession 0209268). NOAA/NCEI, accessed 14 December 2020, https://doi.org/10.25921/stkw-7w73.

    • Crossref
    • Export Citation
  • Stephens, S. L., and Coauthors, 2018: Drought, tree mortality, and wildfire in forests adapted to frequent fire. BioScience, 68, 7788, https://doi.org/10.1093/biosci/bix146.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Stewart, I. T., D. R. Cayan, and M. D. Dettinger, 2005: Changes toward earlier streamflow timing across western North America. J. Climate, 18, 11361155, https://doi.org/10.1175/JCLI3321.1.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Tedesco, M., and J. Jeyaratnam, 2019: AMSR-E/AMSR2 Unified L3 Global Daily 25 km EASE-Grid Snow Water Equivalent, version 1. NASA National Snow and Ice Data Center Distributed Active Archive Center, accessed 11 November 2020, https://doi.org/10.5067/8AE2ILXB5SM6.

    • Crossref
    • Export Citation
  • Thornton, M., R. Shrestha, Y. Wei, P. Thornton, S. Kao, and B. Wilson, 2020: Daymet: Daily Surface Weather Data on a 1-km Grid for North America, version 4. ORNL Distributed Active Archive Center, accessed 29 December 2020, https://doi.org/10.3334/ORNLDAAC/1840.

    • Crossref
    • Export Citation
  • Trujillo, E., N. P. Molotch, M. L. Goulden, A. E. Kelly, and R. C. Bales, 2012: Elevation-dependent influence of snow accumulation on forest greening. Nat. Geosci., 5, 705709, https://doi.org/10.1038/ngeo1571.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Ukkola, A. M., I. C. Prentice, T. F. Keenan, A. I. J. M. van Dijk, N. R. Viney, R. B. Myneni, and J. Bi, 2016: Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Climate Change, 6, 7578, https://doi.org/10.1038/nclimate2831.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • van den Hurk, B., and Coauthors, 2016: LS3MIP (v1.0) contribution to CMIP6: The Land Surface, Snow and Soil moisture Model Intercomparison Project – aims, setup and expected outcome. Geosci. Model Dev., 9, 28092832, https://doi.org/10.5194/gmd-9-2809-2016.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Viviroli, D., H. H. Dürr, B. Messerli, M. Meybeck, and R. Weingartner, 2007: Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res., 43, W07447, https://doi.org/10.1029/2006WR005653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., 2016: Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. Roy. Soc. London, B371, 20150178, https://doi.org/10.1098/rstb.2015.0178.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam, 2006: Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940943, https://doi.org/10.1126/science.1128834.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012: Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, https://doi.org/10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Zeng, X., P. Broxton, and N. Dawson, 2018: Snowpack change from 1982 to 2016 over conterminous United States. Geophys. Res. Lett., 45, 12 940,12 947, https://doi.org/10.1029/2018GL079621.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zhang, T., T. Wang, G. Krinner, X. Wang, T. Gasser, S. Peng, S. Piao, and T. Yao, 2019: The weakening relationship between Eurasian spring snow cover and Indian summer monsoon rainfall. Sci. Adv., 5, eaau8932, https://doi.org/10.1126/sciadv.aau8932.

    • Crossref
    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 8 8 0
Full Text Views 418 418 199
PDF Downloads 335 335 205

Observing, Measuring, and Assessing the Consequences of Snow Drought

View More View Less
  • 1 Program in Ecology, Evolution, Environment and Society, and Department of Geography Dartmouth College, Hanover, New Hampshire;
  • | 2 Department of Geography, and Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, and Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Warmer and shorter winters from climate change will reduce snowpacks in most seasonally snow-covered regions of the world, with consequences for freshwater availability in spring and summer when people and ecosystems demand water most. Recent record-low snowpacks, such as those in the winters of 2013/14 and 2014/15 in the western United States, have led to a surge in research on “snow droughts,” which are pointed to as harbingers of global warming that pose significant societal hazards. Yet, despite the importance of understanding snow droughts to best prepare for their attendant impacts, the concept remains amorphous, with no agreed-upon definition of what they are, how best to measure them, and how such snow droughts connect to warm-season impacts. These knowledge gaps limit our understanding of the risks posed by snow droughts in the present and future, and thus our preparedness for their differential impacts on freshwater resources. To address these issues, we compile a hemispheric ensemble of in situ, satellite, and reanalysis snowpack datasets. We use this ensemble to evaluate the scientific challenges and uncertainties arising from differences in defining and measuring snow droughts, and to identify opportunities to leverage this information to better understand the significance of snow droughts. We show that a clearer quantification of what constitutes a snow drought, including its uncertainties, improves our ability to anticipate costly and disruptive warm-season droughts, which is vital for informing risk management and adaptation to changing snow regimes.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexander R. Gottlieb, alexander.r.gottlieb.gr@dartmouth.edu

Abstract

Warmer and shorter winters from climate change will reduce snowpacks in most seasonally snow-covered regions of the world, with consequences for freshwater availability in spring and summer when people and ecosystems demand water most. Recent record-low snowpacks, such as those in the winters of 2013/14 and 2014/15 in the western United States, have led to a surge in research on “snow droughts,” which are pointed to as harbingers of global warming that pose significant societal hazards. Yet, despite the importance of understanding snow droughts to best prepare for their attendant impacts, the concept remains amorphous, with no agreed-upon definition of what they are, how best to measure them, and how such snow droughts connect to warm-season impacts. These knowledge gaps limit our understanding of the risks posed by snow droughts in the present and future, and thus our preparedness for their differential impacts on freshwater resources. To address these issues, we compile a hemispheric ensemble of in situ, satellite, and reanalysis snowpack datasets. We use this ensemble to evaluate the scientific challenges and uncertainties arising from differences in defining and measuring snow droughts, and to identify opportunities to leverage this information to better understand the significance of snow droughts. We show that a clearer quantification of what constitutes a snow drought, including its uncertainties, improves our ability to anticipate costly and disruptive warm-season droughts, which is vital for informing risk management and adaptation to changing snow regimes.

© 2022 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding author: Alexander R. Gottlieb, alexander.r.gottlieb.gr@dartmouth.edu
Save