The Canopy Horizontal Array Turbulence Study (CHATS) took place in spring 2007 and is the third in the series of Horizontal Array Turbulence Study (HATS) experiments. The HATS experiments have been instrumental in testing and developing subfilterscale (SFS) models for large-eddy simulation (LES) of planetary boundary layer (PBL) turbulence. The CHATS campaign took place in a deciduous walnut orchard near Dixon, California, and was designed to examine the impacts of vegetation on SFS turbulence. Measurements were collected both prior to and following leafout to capture the impact of leaves on the turbulence, stratification, and scalar source/sink distribution. CHATS utilized crosswind arrays of fast-response instrumentation to investigate the impact of the canopy-imposed distribution of momentum extraction and scalar sources on SFS transport of momentum, energy, and three scalars. To directly test and link with PBL parameterizations of canopy-modified turbulent exchange, CHATS also included a 30-m profile tower instrumented with turbulence instrumentation, fast and slow chemical sensors, aerosol samplers, and radiation instrumentation. A highresolution scanning backscatter lidar characterized the turbulence structure above and within the canopy; a scanning Doppler lidar, mini sodar/radio acoustic sounding system (RASS), and a new helicopter-observing platform provided details of the PBL-scale flow. Ultimately, the CHATS dataset will lead to improved parameterizations of energy and scalar transport to and from vegetation, which are a critical component of global and regional land, atmosphere, and chemical models. This manuscript presents an overview of the experiment, documents the regime sampled, and highlights some preliminary key findings.
*CURRENT AFFILIATIONS: Held—University of Bayreuth, Bayreuth, Germany; Mayor—California State University, Chico, California; Rizzo—University of Sao Paulo, Sao Paulo, Brazil; Edburg—University of Idaho, Moscow, Idaho; Avissar—University of Miami, Miami, Florida
+The National Center for Atmospheric Research is sponsored by the National Science Foundation.