• Abel, S. J., , D. N. Walters & , and G. Allen, 2010: Evaluation of stratocumulus cloud prediction in the Met Office forecast model during VOCALS-REx. Atmos. Chem. Phys., 10, 10 54110 559.

    • Search Google Scholar
    • Export Citation
  • Allan, R. P., , A. Slingo, , S. F. Milton & , and M. A. Brooks, 2007: Evaluation of the Met Office global forecast model using Geostationary Earth Radiation Budget (GERB) data. Quart. J. Roy. Meteor. Soc., 133, 19932010.

    • Search Google Scholar
    • Export Citation
  • Arribas, A., and Coauthors, 2011: The GloSea4 ensemble prediction system for seasonal forecasting. Mon. Wea. Rev., 139, 18911910.

  • Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir turbulence in the ocean surface boundary layer. Geophys. Res. Lett., 39, L18605, doi:10.1029/2012GL052932.

    • Search Google Scholar
    • Export Citation
  • Bellouin, N., , O. Boucher, , J. Haywood, , C. Johnson, , A. Jones, , J. Rae & , and S. Woodward, 2007: Improved representation of aerosols for HadGEM2. Hadley Centre Tech. Note 73, 43 pp. [Available online at www.metoffice.gov.uk/archive/science/climatescience/hctn73.]

    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2011: The Joint UK Land Environment Simulator (JULES), model description—Part 1: Energy and water fluxes. Geosci. Model Dev., 4, 595640, doi:10.5194/gmdd-4-595-2011.

    • Search Google Scholar
    • Export Citation
  • Birch, C. E., , I. M. Brooks, , M. Tjernström, , S. F. Milton, , P. Earnshaw, , S. Söderberg & , and P. O. G. Persson, 2009: The performance of a global and mesoscale model over the central Arctic Ocean during late summer. J. Geophys. Res., 114, D13104, doi:10.1029/2008JD010790.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., , M. J. Webb, , M. E. Brooks, , M. A. Ringer, , K. D. Williams, , S. F. Milton & , and D. R. Wilson, 2008: Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities. J. Geophys. Res., 113, D00A13, doi:10.1029/2007JD009620.

    • Search Google Scholar
    • Export Citation
  • Bowler, N. E., , A. Arribas, , K. R. Mylne, , K. B. Robertson & , and S. E. Beare, 2008: The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc., 134, 703722.

    • Search Google Scholar
    • Export Citation
  • Brunet, G., and Coauthors, 2010: Collaboration of the weather and climate communities to advance sub-seasonal to seasonal prediction. Bull. Amer. Meteor. Soc., 91, 13971406.

    • Search Google Scholar
    • Export Citation
  • Bushby, F. H. & , and M. S. Timpson, 1967: A 10-level atmospheric model and frontal rain. Quart. J. Roy. Meteor. Soc., 93, 117.

  • Corby, G. A., , A. Gilchrist & , and P. Rowntree, 1977: United Kingdom Meteorological Office five-level general circulation model. Methods Comput. Phys., 17, 67110.

    • Search Google Scholar
    • Export Citation
  • Cullen, M. J. P., 1993: The unified forecast/climate model. Meteor. Mag., 122, 8194.

  • Cullen, M. J. P. & , and T. Davies, 1991: A conservative split-explicit integration scheme with fourth order horizontal advection. Quart. J. Roy. Meteor. Soc., 117, 9931002.

    • Search Google Scholar
    • Export Citation
  • Cusack, S., , A. Slingo, , J. M. Edwards & , and M. Wild, 1998: The radiative impact of a simple aerosol climatology on the Hadley Centre atmospheric GCM. Quart. J. Roy. Meteor. Soc., 124, 25172526.

    • Search Google Scholar
    • Export Citation
  • Davies, T., , M. J. P. Cullen, , A. J. Malcolm, , M. H. Mawson, , A. Staniforth, , A. A. White & , and N. Wood, 2005: A new dynamical core for the Met Office's global and regional modeling of the atmosphere. Quart. J. Roy. Meteor. Soc., 131, 17591782.

    • Search Google Scholar
    • Export Citation
  • Gadd, A. J., 1978: A split-explicit integration scheme for multi-level prediction models. Meteor. Mag., 104, 569582.

  • Golding, B. W., 1990: The Meteorological Office mesoscale model. Meteor. Mag., 119, 8196.

  • Goni, G. & , and J. Trinanes, 2003: Ocean thermal structure monitoring could aid in the intensity forecast of tropical cyclones. Eos, Trans. Amer. Geophys. Union, 84, 573578, doi:10.1029/2003EO510001.

    • Search Google Scholar
    • Export Citation
  • Gordon, C., , C. Cooper, , C. A. Senior, , H. Banks, , J. M. Gregory, , T. C. Johns, , J. F. B. Mitchell & , and R. A. Wood, 2000: The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 16, 147168.

    • Search Google Scholar
    • Export Citation
  • Greed, G., , J. M. Haywood, , S. Milton, , A. Keil, , S. Christopher, , P. Gupta & , and E. J. Highwood, 2008: Aerosol optical depths over North Africa: 2. Modeling and model validation. J. Geophys. Res., 113, D00C05, doi:10.1029/2007JD009457.

    • Search Google Scholar
    • Export Citation
  • Gregory, D., , G. J. Shutts & , and J. R. Mitchell, 1998: A new gravity-wave-drag scheme incorporating anisotropic orography and low-level wave breaking: Impact upon the climate of the UK Meteorological Office Unified Model. Quart. J. Roy. Meteor. Soc., 124, 463493.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., , R. P. Allan, , I. Culverwell, , A. Slingo, , S. Milton, , J. Edwards & , and N. Clerbaux, 2005: Can desert dust explain the outgoing longwave radiation anomaly over the Sahara during July 2003? J. Geophys. Res., 110, D05105, doi:10.1029/2004JD005232.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., and Coauthors, 2008: Overview of the Dust and Biomass-burning Experiment and African Monsoon Multidisciplinary Analysis Special Observing Period-0. J. Geophys. Res., 113, D00C17, doi:10.1029/2008JD010077.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., and Coauthors, 2011: Motivation, rationale and key results from the GERBILS Saharan dust measurement campaign. Quart. J. Roy. Meteor. Soc., 137, 11061116.

    • Search Google Scholar
    • Export Citation
  • Hazeleger, W., and Coauthors, 2010: EC-Earth: A seamless Earth-system prediction approach in action. Bull. Amer. Meteor. Soc., 91, 13571363.

    • Search Google Scholar
    • Export Citation
  • Hurrell, J. W., , G. A. Meehl, , D. Bader, , T. Delworth, , B. Kirtman & , and B. Wielicki, 2009: A unified modeling approach to climate system prediction. Bull. Amer. Meteor. Soc., 90, 18191832.

    • Search Google Scholar
    • Export Citation
  • Jones, A., , D. L. Roberts, , M. J. Woodage & , and C. E. Johnson, 2001: Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle. J. Geophys. Res., 106(D17), 20 29320 310.

    • Search Google Scholar
    • Export Citation
  • Kendon, E. J., , N. M. Roberts, , C. A. Senior & , and M. J. Roberts, 2012: Realism of rainfall in a very highresolution regional climate model. J. Climate, 25, 57915806.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., , C. D. Hoyos, , P. J. Webster & , and I.-S. Kang, 2010: Ocean–atmosphere coupling and the boreal winter MJO. Climate Dyn., 35, 771784.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., , X. Jiang, , J. S. Boyle, , S. Malyshev & , and S. C. Xie, 2006: Diagnosis of the summertime warm and dry bias over the U.S. Southern Great Plains in the GFDL climate model using a weather forecasting approach. Geophys. Res. Lett., 33, L18805, doi:10.1029/2006GL027567.

    • Search Google Scholar
    • Export Citation
  • Klinker, E. & , and P. D. Sardeshmukh, 1992: The diagnosis of mechanical dissipation in the atmosphere from large-scale balance requirements. J. Atmos. Sci., 49, 608627.

    • Search Google Scholar
    • Export Citation
  • Lock, A. P., , A. R. Brown, , M. R. Bush, , G. M. Martin & , and R. N. B. Smith, 2000: A new boundary layer scheme for the Unified Model. Part I: Scheme description and single-column model tests. Mon. Wea. Rev., 128, 31873199.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., , M. R. Bush, , A. R. Brown, , A. P. Lock & , and R. N. B. Smith, 2000: A new boundary layer scheme for the Unified Model. Part II: Tests in climate and mesoscale models. Mon. Wea. Rev., 128, 32003217.

    • Search Google Scholar
    • Export Citation
  • Martin, G. M., , M. A. Ringer, , V. D. Pope, , A. Jones, , C. Dearden & , and T. J. Hinton, 2006: The physical properties of the atmosphere in the new Hadley Centre Global Environmental Model (HadGEM1). Part I: Model description and global climatology. J. Climate, 19, 12741301.

    • Search Google Scholar
    • Export Citation
  • Miller, M. A. & , and A. Slingo, 2007: The ARM Mobile Facility and its first international deployment: Measuring radiative flux divergence in West Africa. Bull. Amer. Meteor. Soc., 88, 12291244.

    • Search Google Scholar
    • Export Citation
  • Milton, S. F. & , and C. A. Wilson, 1996: The impact of parameterized subgrid-scale orographic forcing on systematic errors in a global NWP model. Mon. Wea. Rev., 124, 20232045.

    • Search Google Scholar
    • Export Citation
  • Milton, S. F., , G. Greed, , M. E. Brooks, , J. Haywood, , B. Johnson, , R. P. Allan, , A. Slingo & , and W. M. F. Grey, 2008: Modeled and observed atmospheric radiation balance during the West African dry season: Role of mineral dust, biomass burning aerosol, and surface albedo. J. Geophys. Res., 113, D00C02, doi:10.1029/2007JD009741.

    • Search Google Scholar
    • Export Citation
  • Nobre, C., and Coauthors, 2010: Addressing the complexity of the Earth system. Bull. Amer. Meteor. Soc., 91, 13891396.

  • Rodwell, M. J. & , and T. N. Palmer, 2007: Using numerical weather prediction to assess climate models. Quart. J. Roy. Meteor. Soc., 133, 129146.

    • Search Google Scholar
    • Export Citation
  • Sanchez, C., , K. D. Williams, , G. J. Shutts, , R. E. McDonald, , T. J. Hinton, , C. A. Senior & , and N. Wood, 2012: Towards the development of a robust model hierarchy: Investigation of dynamical limitations at low resolution and possible solutions. Quart. J. Roy. Meteor. Soc., in press, doi:10.1002/qj.1971.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2011: Improved Atlantic blocking in a climate model. Geophys. Res. Lett., 38, L23703, doi:10.1029/2011GL049573.

    • Search Google Scholar
    • Export Citation
  • Senior, C. A., and Coauthors, 2011: Synergies between numerical weather prediction and general circulation climate models. The Development of Atmospheric General Circulation Models, L. Donner, , W. Schubert & , and R. Somerville, Eds., Cambridge University Press, 76116.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M., and Coauthors, 2010: An Earth-System Prediction Initiative for the twenty-first century. Bull. Amer. Meteor. Soc., 91, 13771388.

    • Search Google Scholar
    • Export Citation
  • Shutts, G. J., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc., 131, 30793102.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., and Coauthors, 2006: Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance. Geophys. Res. Lett., 33, L24817, doi:10.1029/2006GL027869.

    • Search Google Scholar
    • Export Citation
  • Smith, D. M., , S. Cusack, , A. W. Colman, , C. K. Folland, , G. R. Harris & , and J. M. Murphy, 2007: Improved surface temperature prediction for the coming decade from a global climate model. Science, 317, 796799.

    • Search Google Scholar
    • Export Citation
  • Smith, R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435460.

    • Search Google Scholar
    • Export Citation
  • Stratton, R. A., 1999: A high resolution AMIP integration using the Hadley Centre model HadAM2b. Climate Dyn., 15, 928.

  • Stephens, G. L., and Coauthors, 2010: Dreary state of precipitation in global models. J. Geophys. Res., 115, D24211, doi:10.1029/2010JD014532.

    • Search Google Scholar
    • Export Citation
  • Tapp, M. C. & , and A. A. White, 1976: A non-hydrostatic mesoscale model. Quart. J. Roy. Meteor. Soc., 102, 277296.

  • Trenberth, K. E., , A. Dai, , R. M. Rasmussen & , and D. B. Parsons, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc., 84, 12051217.

    • Search Google Scholar
    • Export Citation
  • Walters, D. N., and Coauthors, 2011: The Met Office Unified Model Global Atmosphere 3.0/3.1 and JULES Global Land 3.0/3.1 configurations. Geosci. Model Dev., 4, 919941, doi:10.5194/gmd-4-919-2011.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D. & , and M. E. Brooks, 2008: Initial tendencies of cloud regimes in the Met Office Unified Model. J. Climate, 21, 833840.

    • Search Google Scholar
    • Export Citation
  • Woodward, S., 2001: Modeling the atmospheric life cycle and radiative impact of mineral dust in the Hadley Centre climate model. J. Geophys. Res., 106(D16), 18 15518 166.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 279 278 55
PDF Downloads 225 225 31

Unified Modeling and Prediction of Weather and Climate: A 25-Year Journey

View More View Less
  • 1 Met Office, Exeter, United Kingdom
© Get Permissions
Restricted access

In recent years there has been a growing appreciation of the potential advantages of using a seamless approach to weather and climate prediction. However, what exactly should this mean in practice? To help address this question, we document some of the experiences already gathered over 25 years of developing and using the Met Office Unified Model (MetUM) for both weather and climate prediction. Overall, taking a unified approach has given enormous benefits, both scientific and in terms of efficiency, but we also detail some of the challenges it has presented and the approaches taken to overcome them.

CORRESPONDING AUTHOR: Andrew Brown, Met Office, FitzRoy Road, Exeter EX1 3 PB, United Kingdom, E-mail: andy.brown@metoffice.gov.uk

In recent years there has been a growing appreciation of the potential advantages of using a seamless approach to weather and climate prediction. However, what exactly should this mean in practice? To help address this question, we document some of the experiences already gathered over 25 years of developing and using the Met Office Unified Model (MetUM) for both weather and climate prediction. Overall, taking a unified approach has given enormous benefits, both scientific and in terms of efficiency, but we also detail some of the challenges it has presented and the approaches taken to overcome them.

CORRESPONDING AUTHOR: Andrew Brown, Met Office, FitzRoy Road, Exeter EX1 3 PB, United Kingdom, E-mail: andy.brown@metoffice.gov.uk
Save