• Black, P. G., , E. Uhlhorn, , M. D. Powell & , and J. Carswell, cited 2011: A new era in hurricane reconnaissance: Real time measurement of surface wind structure and intensity via microwave remote sensing. [Available online at http://ams.confex.com/ams/last2000/techprogram/paper_12581.htm.]

    • Search Google Scholar
    • Export Citation
  • Donelan, M. A., , B. K. Haus, , N. Reul, , W. J. Plant, , M. Stiassnie, , H. C. Graber, , O. B. Brown & , and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi:10.1029/2004GL019460.

    • Search Google Scholar
    • Export Citation
  • Donnelly, W. J., , J. R. Carswell, , R. E. McIntosh, , P. S. Chang, , J. Wilkerson, , F. Marks & , and P. G. Black, 1999: Revised ocean backscatter model at C and Ku band under high-wind conditions. J. Geophys. Res., 104, 11 48511 497.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , J. E. Hare & , and A. A. Grachev, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591.

    • Search Google Scholar
    • Export Citation
  • Fernandez, D. E., , J. R. Carswell, , S. Frasier, , P. S. Chang, , P. G. Black & , and F. D. Marks, 2006: Dual-polarized C- and Ku-band ocean backscatter response to hurricane-force winds. J. Geophys. Res., 111, C08013, doi:10.1029/2005JC003048.

    • Search Google Scholar
    • Export Citation
  • Friedman, K. S. & , and X. Li, 2000: Monitoring hurricanes over the ocean with wide swath SAR. Johns Hopkins APL Tech. Dig., 21, 8085.

  • Gerling, T. W., 1986: Structure of the surface wind field from the Seasat SAR. J. Geophys. Res., 91, 23082320.

  • Hersbach, H., 2010: Comparison of C-band scatterometer CMOD5.N equivalent neural winds with ECMWF. J. Atmos. Oceanic Technol., 27, 721736.

    • Search Google Scholar
    • Export Citation
  • Hersbach, H., , A. Stoffelen & , and S. de Haan, 2007: An improved C-band scatterometer ocean geophysical model function: CMOD5. J. Geophys. Res., 112, C03006, doi:10.1029/2006JC003743.

    • Search Google Scholar
    • Export Citation
  • Horstmann, J., , H. Schiller, , J. Schulz-Stellenfleth & , and S. Lehner, 2003: Global wind speed retrieval from SAR. IEEE Trans. Geosci. Remote Sens., 41, 22772286.

    • Search Google Scholar
    • Export Citation
  • Horstmann, J., , D. R. Thompson, , F. Monaldo, , S. Iris & , and H. C. Graber, 2005: Can synthetic aperture radars be used to estimate hurricane force winds? Geophys. Res. Lett., 32, L22801, doi:10.1029/2005GL023992.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., , B. Zhang & , and W. Perrie, 2010: Depolarized radar return for breaking wave measurements and hurricane wind retrieval. Geophys. Res. Lett., 37, L01604, doi:10.1029/2009GL041780.

    • Search Google Scholar
    • Export Citation
  • Jiang, H., , P. G. Black, , E. J. Zipser, , F. D. Marks Jr. & , and E. W. Uhlhorn, 2006: Validation of rain-rate estimation in hurricanes from the stepped frequency microwave radiometer: Algorithm correction and error analysis. J. Atmos. Sci., 63, 252267.

    • Search Google Scholar
    • Export Citation
  • Jones, W. L., , P. G. Black, , V. E. Delnore & , and C. T. Swift, 1981: Airborne microwave remote-sensing measurements of Hurricane Allen. Science, 214, 274280.

    • Search Google Scholar
    • Export Citation
  • Katsaros, K. B., , P. W. Vachon, , W. T. Liu & , and P. G. Black, 2002: Microwave remote sensing of tropical cyclones from space. J. Oceanogr., 58, 137151.

    • Search Google Scholar
    • Export Citation
  • Lee, J.-S. & , and E. Pottier, 2009: Polarimetric Radar Imaging: From Basics to Applications. Optical Science and Engineering, Vol. 142, CRC Press, 398 pp.

    • Search Google Scholar
    • Export Citation
  • Lehner, S., , J. Horstmann, , W. Koch & , and W. Rosenthal, 1998: Mesoscale wind measurements using recalibrated ERS SAR images. J. Geophys. Res., 103, 78477856.

    • Search Google Scholar
    • Export Citation
  • Li, X., , W. Zheng, , X. Yang, , Z. Li & , and W. G. Pichel, 2011: Sea surface imprints of coastal mountain lee waves imaged by synthetic aperture radar. J. Geophys. Res., 116, C02014, doi:10.1029/2010JC006643.

    • Search Google Scholar
    • Export Citation
  • Monaldo, F. M., , D. R. Thompson, , R. C. Beal, , W. G. Pichel & , and P. Clemente-Colón, 2001: Comparison of SAR-derived wind speed with model predictions and ocean buoy measurements. IEEE Trans. Geosci. Remote Sens., 39, 25872600.

    • Search Google Scholar
    • Export Citation
  • Monaldo, F. M., , D. R. Thompson, , W. G. Pichel & , and P. Clemente-Colon, 2004: A systematic comparison of QuikSCAT and SAR ocean surface wind speeds. IEEE Trans. Geosci. Remote Sens., 42, 283291.

    • Search Google Scholar
    • Export Citation
  • Phillips, O. M., 1988: Radar returns from the sea surface—Bragg scattering and breaking waves. J. Phys. Oceanogr., 18, 10651074.

  • Pichel, W. G., and Coauthors, 2007: Envisat ASAR applications demonstrations: Alaska SAR demonstration and Gulf of Mexico hurricane studies. Proc. Envisat Symp., Montreus, Switzerland, European Space Agency, 2327.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118, 891917.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., , S. H. Houston, , L. R. Amat & , and N. Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn., 77–78, 5364.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., , P. J. Vickery & , and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and Coauthors, 2010: Reconstruction of Hurricane Katrina's wind fields for storm surge and wave hindcasting. Ocean Eng., 37, 2636.

    • Search Google Scholar
    • Export Citation
  • Reppucci, A., , S. Lehner, , J. Schulz-Stellenfleth & , and C. S. Yang, 2008: Extreme wind conditions observed by satellite synthetic aperture radar in the North West Pacific. Int. J. Remote. Sens., 29, 61296144.

    • Search Google Scholar
    • Export Citation
  • Reppucci, A., , S. Lehner, , J. Schulz-Stellenfleth & , and S. Brusch, 2010: Tropical cyclone intensity estimated from wide-swath SAR images. IEEE Trans. Geosci. Remote Sens., 48, 16391649.

    • Search Google Scholar
    • Export Citation
  • Shen, H., , W. Perrie & , and Y. He, 2006: A new hurricane wind retrieval algorithm for SAR images. Geophys. Res. Lett., 33, L21812, doi:10.1029/2006GL027087.

    • Search Google Scholar
    • Export Citation
  • Shen, H., , Y. He & , and W. Perrie, 2009: Speed ambiguity in hurricane wind retrieval from SAR imagery. Int. J. Remote Sens., 30, 28272836.

    • Search Google Scholar
    • Export Citation
  • Stoffelen, A. & , and D. Anderson, 1997: Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. J. Geophys. Res., 102, 57675780.

    • Search Google Scholar
    • Export Citation
  • Tournadre, J. & , and Y. Quilfen, 2003: Impact of rain cell on scatterometer data: 1. Theory and modeling. J. Geophys. Res., 108, 3225, doi:10.1029/2002JC001428.

    • Search Google Scholar
    • Export Citation
  • Touzi, R., , P. W. Vachon & , and J. Wolfe, 2010: Requirement on antenna cross-polarization isolation for the operational use of C-band SAR constellations in maritime surveillance. IEEE Geosci. Remote Sens. Lett., 7, 861865.

    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W. & , and P. G. Black, 2003: Verification of remotely sensed sea surface winds in hurricanes. J. Atmos. Oceanic Technol., 20, 99116.

    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., , P. G. Black, , J. L. Franklin, , M. Goodberlet, , J. Carswell & , and A. S. Goldstein, 2007: Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon. Wea. Rev., 135, 30703085.

    • Search Google Scholar
    • Export Citation
  • Vachon, P. W. & , and F. W. Dobson, 1996: Validation of wind vector retrieval from ERS-1 SAR images over the ocean. Global Atmos. Ocean Syst., 5, 177187.

    • Search Google Scholar
    • Export Citation
  • Vachon, P. W. & , and J. Wolfe, 2011: C-band cross-polarization wind speed retrieval. IEEE Geosci. Remote Sens. Lett., 8, 456459.

  • Xu, Q., , H. Lin, , X. Li, , J. Zuo, , Q. Zheng, , W. G. Pichel & , and Y. Liu, 2010: Assessment of an analytical model for sea surface wind speed retrieval from spaceborne SAR. Int. J. Remote Sens., 31, 9931008.

    • Search Google Scholar
    • Export Citation
  • Yang, J., and Coauthors, 2004: Effect of precipitation of ocean wind scatterometry. Proc. IEEE Int. Geoscience and Remote Sensing Symp., Anchorage, Alaska, IEEE, 2024.

    • Search Google Scholar
    • Export Citation
  • Yang, X., , X. Li, , W. G. Pichel & , and Z. Li, 2011a: Comparison of ocean surface winds from ENVISAT ASAR, MetOp ASCAT scatterometer, buoy measurements, and NOGAPS model. IEEE Trans. Geosci. Remote Sens., 49, 47434750, doi:10.1109/TGRS.2011.2159802.

    • Search Google Scholar
    • Export Citation
  • Yang, X., , X. Li, , Q. Zheng, , X. Gu, , W. G. Pichel & , and Z. Li, 2011b: Comparison of ocean-surface winds retrieved from QuikSCAT scatterometer and RADARSAT-1 SAR in offshore waters of the U.S. West Coast. IEEE Geosci. Remote Lett., 8, 163167, doi:10.1109/LGRS.2010.2053345.

    • Search Google Scholar
    • Export Citation
  • Zhang, B., , W. Perrie & , and Y. He, 2011: Wind speed retrieval from RADARSAT-2 quad-polarization images using a new polarization ratio model. J. Geophys. Res., 116, C08008, doi:10.1029/2010JC006522.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 159 159 26
PDF Downloads 111 111 23

Cross-Polarized Synthetic Aperture Radar: A New Potential Measurement Technique for Hurricanes

View More View Less
  • 1 School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China, and Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
  • 2 Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, Canada
© Get Permissions
Restricted access

We present an empirical C-band Cross-Polarization Ocean (C-2PO) model for wind retrievals from synthetic aperture radar (SAR) data collected by the RADARSAT-2 satellite. The C-2PO model relates normalized radar cross section (NRCS) in cross polarization to wind speed at 10-m height. This wind retrieval model has the characteristic that it is independent of wind direction and radar incidence angle but is quite linear with respect to wind speed. To evaluate the accuracy of the proposed model, winds with a resolution on the scale of 1 km were retrieved from a dual-polarization SAR image of Hurricane Earl on 2 September 2010, using the C-2PO model and compared with CMOD5.N, the newest available C-band geophysical model function (GMF), and validated with collocated airborne stepped-frequency microwave radiometer measurements and National Data Buoy Center data. Results suggest that for winds up to 38 m s−1, C-2PO has a bias of −0.89 m s−1 and a root-meansquare error of 3.23 m s−1 compared to CMOD5.N, which has a bias of −4.14 m s−1 and an rms difference of 6.24 m s−1. Similar results are obtained from Hurricane Ike, comparing wind retrievals from C-2PO and CMOD5.N with H*Wind data. The advantage of C-2PO over CMOD5.N and other GMFs is that it does not need any external wind direction and radar incidence angle inputs. Moreover, in the presently available quad-polarization dataset, C-2PO has the feature that the cross-polarized NRCS linearly increases even for wind speeds up to 26 m s−1 and reproduces the hurricane eye structure well, thereby providing a potential technique for hurricane observations from space.

Corresponding author: William Perrie, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada, E-mail: william.perrie@dfo-mpo.gc.ca

We present an empirical C-band Cross-Polarization Ocean (C-2PO) model for wind retrievals from synthetic aperture radar (SAR) data collected by the RADARSAT-2 satellite. The C-2PO model relates normalized radar cross section (NRCS) in cross polarization to wind speed at 10-m height. This wind retrieval model has the characteristic that it is independent of wind direction and radar incidence angle but is quite linear with respect to wind speed. To evaluate the accuracy of the proposed model, winds with a resolution on the scale of 1 km were retrieved from a dual-polarization SAR image of Hurricane Earl on 2 September 2010, using the C-2PO model and compared with CMOD5.N, the newest available C-band geophysical model function (GMF), and validated with collocated airborne stepped-frequency microwave radiometer measurements and National Data Buoy Center data. Results suggest that for winds up to 38 m s−1, C-2PO has a bias of −0.89 m s−1 and a root-meansquare error of 3.23 m s−1 compared to CMOD5.N, which has a bias of −4.14 m s−1 and an rms difference of 6.24 m s−1. Similar results are obtained from Hurricane Ike, comparing wind retrievals from C-2PO and CMOD5.N with H*Wind data. The advantage of C-2PO over CMOD5.N and other GMFs is that it does not need any external wind direction and radar incidence angle inputs. Moreover, in the presently available quad-polarization dataset, C-2PO has the feature that the cross-polarized NRCS linearly increases even for wind speeds up to 26 m s−1 and reproduces the hurricane eye structure well, thereby providing a potential technique for hurricane observations from space.

Corresponding author: William Perrie, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada, E-mail: william.perrie@dfo-mpo.gc.ca
Save