• Ackerman, T. P., and G. M. Stokes, 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56, 3845, doi:10.1063/1.1554135.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B., 1989: Aerosols, cloud microphysics and fractional cloudiness. Science, 245, 12271230.

  • Andrews, E., P. J. Sheridan, J. A. Ogren, and R. Ferrare, 2004: In situ aerosol profiles over the southern great plains cloud and radiation test bed site: 1. Aerosol optical properties. J. Geophys. Res., 109, D06208, doi:10.1029/2003JD004025.

    • Search Google Scholar
    • Export Citation
  • Berg, L. K., C. M. Berkowitz, J. C. Barnard, G. Senum, and S. R. Springston, 2011: Observations of the first aerosol indirect effect in shallow cumuli. Geophys. Res. Lett., 38, L03809, doi:10.1029/2010GL046047.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., and C. Jakob, 2002: Evaluation of the diurnal cycle of precipitation, surface thermodynamics, and surface f luxes in the ECMWF model using LBA data. J. Geophys. Res., 107, 8045, doi:10.1029/2001JD000427.

    • Search Google Scholar
    • Export Citation
  • Boers, R., and R. M. Mitchell, 1994: Absorption feedback in stratocumulus clouds: Influence on cloud top albedo. Tellus, 46A, 229241.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufresne, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., and Coauthors, 2002: Large-eddy simulation of the diurnal cycle of shallow cumulus convection. Quart. J. Roy. Meteor. Soc., 128, 10751093.

    • Search Google Scholar
    • Export Citation
  • Bucholtz, A., R. T. Bluth, B. Kelly, S. Taylor, K. Batson, A. W. Sarto, and T. P. Toonman, and R. F. McCoy Jr., 2008: The Stabilized Radiometer Platform (STRAP)—An actively stabilized horizontally level platform for improved aircraft irradiance measurements. J. Atmos. Oceanic Technol., 25, 21612175.

    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., and J. H. Joseph, 1989: Fractal statistics of cloud fields. Mon. Wea. Rev., 117, 261272.

  • Cairns, B., F. Waquet, K. Knobelspiesse, J. Chowdhary, and J. L. Deuzé, 2009: Polarimetric remote sensing of aerosols over land surfaces. Satellite Aerosol Remote Sensing over Land, A. A. Kokhanovsky and G. de Leeuw, Eds., Springer, 295325.

    • Search Google Scholar
    • Export Citation
  • Chaboureau, J.-P., F. Guichard, J.-L. Redelsperger, and J.-P. Lafore, 2004: The role of stability and moisture in the diurnal cycle of convection over land. Quart. J. Roy. Meteor. Soc., 130, 31053117.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., A. S. Ackerman, F. A.-M. Bender, T. L. Anderson, and Z. Liu, 2007: On the climate forcing consequences of the albedo continuum between cloudy and clear air. Tellus, 59B, 715727, doi:10.1111/j.1600-0889.2007.00297.x.

    • Search Google Scholar
    • Export Citation
  • Chiu, J. C., A. Marshak, Y. Knyazikhin, W. J. Wiscombe, H. W. Barker, J. C. Barnard, and Y. Luo, 2006: Remote sensing of cloud properties using ground-based measurements of zenith radiance. J. Geophys. Res., 111, D16201, doi:10.1029/2005JD006843.

    • Search Google Scholar
    • Export Citation
  • Chiu, J. C., C.-H. Huang, A. Marshak, I. Slutsker, D. M. Giles, B. N. Holben, Y. Knyazikhin, and W. J. Wiscombe, 2010: Cloud optical depth retrievals from the Aerosol Robotic Network (AERONET) cloud mode observations. J. Geophys. Res., 115, D14202, doi:10.1029/2009JD013121.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. Miller, and B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor, 39, 645665.

    • Search Google Scholar
    • Export Citation
  • Crewell, S., and U. Löhnert, 2003: Accuracy of cloud liquid water path from ground-based microwave radiometer 2. Sensor accuracy and synergy. Radio Sci., 38, 8042, doi:10.1029/2002RS002634.

    • Search Google Scholar
    • Export Citation
  • Dey, S., L. Di Girolamo, and G. Zhao, 2008: Scale effect on statistics of the macrophysical properties of trade wind cumuli over the tropical western Atlantic during RICO. J. Geophys. Res., 113, D24214, doi:10.1029/2008JD010295.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., and Coauthors, 2006: Use of in situ cloud condensation nuclei, extinction, and aerosol size distribution measurements to test a method for retrieving cloud condensation nuclei profiles from surface measurements. J. Geophys. Res., 111, D05S10, doi:10.1029/2004JD005752.

    • Search Google Scholar
    • Export Citation
  • Hair, J. W., and Coauthors, 2008: Airborne high spectral resolution lidar for profiling aerosol optical properties. Appl. Opt., 47, 67346752, doi:10.1364/AO.47.006734.

    • Search Google Scholar
    • Export Citation
  • Hansen, J. E., and L. D. Travis, 1974: Light scattering in planetary atmospheres. Space Sci. Rev., 16, 527610.

  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelsen, 1992: The effect of cloud type on Earth's energy balance: Global analysis. J. Climate, 5, 12811304.

    • Search Google Scholar
    • Export Citation
  • Hudson, J. G., and S. S. Yum, 2002: Cloud condensation nuclei spectra and polluted and clean clouds over the Indian Ocean. J. Geophys. Res., 107, 8022, doi:10.1029/2001JD000829.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2007: Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Amer. Meteor. Soc., 88, 883898.

    • Search Google Scholar
    • Export Citation
  • IPCC 2007: Climate Change 2007: The Physical Science Basis. Contirbution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., and D. Randall, 2006: Highresolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63, 34213436.

    • Search Google Scholar
    • Export Citation
  • Koren, I., L. A. Remer, Y. J. Kaufman, Y. Rudich, and J. V. Martins, 2007: On the twilight zone between clouds and aerosols. Geophys. Res. Lett., 34, L08805, doi:10.1029/2007GL029253.

    • Search Google Scholar
    • Export Citation
  • Lazarus, S. M., S. K. Krueger, and G. G. Mace, 2000: A cloud climatology of the Southern Great Plains ARM CART. J. Climate, 13, 17621775.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and Coauthors, 2004: The diurnal cycle of shallow cumulus clouds over land: A single-column model intercomparison study. Quart. J. Roy. Meteor. Soc., 130, 33393364.

    • Search Google Scholar
    • Export Citation
  • Li, Z., M. C. Cribb, and A. P. Trishchenko, 2002: Impact of surface inhomogeneity on solar radiative transfer under overcast conditions. J. Geophys. Res., 107, 4294, doi:10.1029/2001JD000976.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., E. E. Clothiaux, G. G. Mace, S. Kato, and X. Dong, 2001: A new retrieval for cloud liquid water path using a ground-based microwave radiometer and measurements of cloud temperature. J. Geophys. Res., 106, 14 48514 500.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., A. Bucholtz, H. Jonsson, B. Schmid, A. M. Vogelmann, and J. Wood, 2010: A method of correcting for tilt from horizontal in downwelling shortwave irradiance measurements on moving platforms. Open Atmos. Sci. J., 4, 7887, doi:10.2174/1874282301004010078.

    • Search Google Scholar
    • Export Citation
  • Lu, M.-L., G. Feingold, H. H. Jonsson, P. Y. Chuang, H. Gates, R. C. Flagan, and J. H. Seinfeld, 2008: Aerosol-cloud relationships in cont inental shallow cumulus. J. Geophys. Res., 113, D15201, doi:10.1029/2007JD009354.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., T. P. Ackerman, E. R. Westwater, S. A. Clough, K. Cady-Pereira, and J. C. Liljegren, 2003: An assessment of microwave absorption models and retrievals of cloud liquid water using clear-sky data. J. Geophys. Res., 108, 4773, doi:10.1029/2003JD003843.

    • Search Google Scholar
    • Export Citation
  • Marshak, A., A. Davis, W. Wiscombe, and R. Cahalan, 1998: Radiative effects of sub-mean free path liquid water variability observed in stratiform clouds. J. Geophys. Res., 103(D16), 19 55719 567.

    • Search Google Scholar
    • Export Citation
  • Marshak, A., Y. Knyazikhin, K. D. Evans, and W. J. Wiscombe, 2004: The “RED versus NIR” plane to retrieve broken-cloud optical depth from ground-based measurements. J. Atmos. Sci., 61, 19111925.

    • Search Google Scholar
    • Export Citation
  • Marshak, A., S. Platnick, T. Várnai, G. Wen, and R. F. Cahalan, 2006: Impact of three-dimensional radiative effects on satellite retrievals of cloud droplet sizes. J. Geophys. Res., 111, D09207, doi:10.1029/2005JD006686.

    • Search Google Scholar
    • Export Citation
  • McComiskey, A., G. Feingold, A. S. Frisch, D. D. Turner, M. A. Miller, J. C. Chiu, Q. Min, and J. A. Ogren, 2009: An assessment of aerosol-cloud interactions in marine stratus clouds based on surface remote sensing. J. Geophys. Res., 114, D09203, doi:10.1029/2008JD011006.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., K. L. Gaustad, E. J. Mlawer, C. N. Long, and J. Delamere, 2011: Development of a high spectral resolution surface albedo product for the ARM Southern Great Plains central facility. Atmos. Meas. Tech., 4, 17131733.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., S. Platnick, L. Di Girolamo, H. Wang, G. Wind, and G. Zhao, 2004: Trade wind cumuli statistics in clean and polluted air over the Indian Ocean from in situ and remote sensing measurements. Geophys. Res. Lett., 31, L21105, doi:10.1029/2004GL020412.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., B. Schmid, A. Korolev, J. A. Ogren, P. B. Russell, J. Tomlinson, D. D. Turner, and W. Wiscombe, 2011: Airborne needs for climate and atmospheric research. Bull. Amer. Meteor. Soc., 92, 11931196.

    • Search Google Scholar
    • Export Citation
  • Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57, 295311.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., and M. B. Baker, 1994: Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer. Nature, 372, 250252, doi:10.1038/372250a0.

    • Search Google Scholar
    • Export Citation
  • Rio, C., F. Hourdin, J.-Y. Grandpeix, and J.-P. Lafore, 2009: Shifting the diurnal cycle of parameterized deep convection over land. Geophys. Res. Lett., 36, L07809, doi:10.1029/2008GL036779.

    • Search Google Scholar
    • Export Citation
  • Sengupta, M., E. E. Clothiaux, T. P. Ackerman, S. Kato, and Q. Min, 2003: Importance of accurate liquid water path for estimation of solar radiation in warm boundary layer clouds: An observational study. J. Climate, 16, 29973009.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2007: Improved ground-based liquid water path retrievals using a combined infrared and microwave approach. J. Geophys. Res., 112, D15204, doi:10.1029/2007JD008530.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. Cady-Pereira, and K. L. Gaustad, 2007a: Retrieving liquid water path and precipitable water vapor from Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45, 36803690, doi:10.1109/TGRS.2007.903703.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2007b: Thin liquid water clouds: Their importance and our challenge. Bull. Amer. Meteor. Soc., 88, 177190.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 12511256.

  • Weaver, C. P., and R. Avissar, 2001: Atmospheric disturbances caused by human modification of the landscape. Bull. Amer. Meteor. Soc., 82, 269281.

    • Search Google Scholar
    • Export Citation
  • Wen, G., A. Marshak, R. F. Cahalan, L. A. Remer, and R. G. Kleidman, 2007: 3-D aerosol-cloud radiative interaction observed in collocated MODIS and ASTER images of cumulus cloud fields. J. Geophys. Res., 112, D13204, doi:10.1029/2006JD008267.

    • Search Google Scholar
    • Export Citation
  • Wendisch, M., D. Müller, D. Schell, and J. Heintzenberg, 2001: An airborne spectral albedometer with active horizontal stabilization. J. Atmos. Oceanic Technol., 18, 18561866.

    • Search Google Scholar
    • Export Citation
  • Westwater, E. R., Y. Han, M. D. Shupe, and S. Matrosov, 2001: Analysis of integrated cloud liquid and precipitable water vapor retrievals from microwave radiometers during the surface heat budget of the Arctic Ocean project. J. Geophys. Res., 106, 32 01932 030.

    • Search Google Scholar
    • Export Citation
  • Williams, K. D., and G. Tselioudis, 2007: GCM intercomparison of global cloud regimes: Present-day evaluation and climate change response. Climate Dyn., 29, 231250, doi:10.1007/s00382-007-0232-2.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., S. Pal, D. D. Turner, and E. Wagner, 2010: Can water vapour Raman lidar resolve profiles of turbulent variables in the convective boundary layer? Bound.-Layer Meteor., 136, 253284, doi:10.1007/s10546-010-9494-z.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and Coauthors, 2005: Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res., 110, D15S02, doi:10.1029/2004JD005021.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8 8 8
PDF Downloads 4 4 4

RACORO Extended-Term Aircraft Observations of Boundary Layer Clouds

View More View Less
  • 1 Brookhaven National Laboratory, Upton, New York
  • | 2 University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 3 NOAA/Earth System Research Laboratory, Boulder, Colorado
  • | 4 NOAA/National Severe Storms Laboratory, Norman, Oklahoma, and University of Wisconsin—Madison, Madison, Wisconsin
  • | 5 Pacific Northwest National Laboratory, Richland, Washington
  • | 6 Naval Postgraduate School, Monterey, California
  • | 7 Naval Research Laboratory, Monterey, California
  • | 8 Texas A&M University, College Station, Texas
  • | 9 NASA Langley Research Center, Hampton, Virginia
  • | 10 Gerber Scientific, Inc., Reston, Virginia
  • | 11 SPEC Inc., Boulder, Colorado
  • | 12 NOAA/Earth System Research Laboratory, Boulder, Colorado, and University of Colorado, Boulder, Colorado
  • | 13 University of Reading, Reading, Berkshire, United Kingdom
  • | 14 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • | 15 NASA Goddard Space Flight Center, Greenbelt, Maryland
Restricted access

A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in situ statistical characterization of continental boundary layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, physical aerosol properties, and atmospheric state parameters. Proximity to the SGP's extensive complement of surface measurements provides ancillary data that support modeling studies and facilitates evaluation of a variety of surface retrieval algorithms. The five-month duration enabled sampling a range of conditions associated with the seasonal transition from winter to summer. Although about twothirds of the flights during which clouds were sampled occurred in May and June, boundary layer cloud fields were sampled under a variety of environmental and aerosol conditions, with about 77% of the cloud flights occurring in cumulus and stratocumulus. Preliminary analyses illustrate use of these data to analyze aerosol– cloud relationships, characterize the horizontal variability of cloud radiative impacts, and evaluate surface-based retrievals. We discuss how an extended-term campaign requires a simplified operating paradigm that is different from that used for typical, short-term, intensive aircraft field programs.

CORRESPONDING AUTHOR: Andrew Vogelmann, Brookhaven National Laboratory, Bldg. 490D, Upton, NY 11973, E-mail: vogelmann@bnl.gov

A first-of-a-kind, extended-term cloud aircraft campaign was conducted to obtain an in situ statistical characterization of continental boundary layer clouds needed to investigate cloud processes and refine retrieval algorithms. Coordinated by the Atmospheric Radiation Measurement (ARM) Aerial Facility (AAF), the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign operated over the ARM Southern Great Plains (SGP) site from 22 January to 30 June 2009, collecting 260 h of data during 59 research flights. A comprehensive payload aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft measured cloud microphysics, solar and thermal radiation, physical aerosol properties, and atmospheric state parameters. Proximity to the SGP's extensive complement of surface measurements provides ancillary data that support modeling studies and facilitates evaluation of a variety of surface retrieval algorithms. The five-month duration enabled sampling a range of conditions associated with the seasonal transition from winter to summer. Although about twothirds of the flights during which clouds were sampled occurred in May and June, boundary layer cloud fields were sampled under a variety of environmental and aerosol conditions, with about 77% of the cloud flights occurring in cumulus and stratocumulus. Preliminary analyses illustrate use of these data to analyze aerosol– cloud relationships, characterize the horizontal variability of cloud radiative impacts, and evaluate surface-based retrievals. We discuss how an extended-term campaign requires a simplified operating paradigm that is different from that used for typical, short-term, intensive aircraft field programs.

CORRESPONDING AUTHOR: Andrew Vogelmann, Brookhaven National Laboratory, Bldg. 490D, Upton, NY 11973, E-mail: vogelmann@bnl.gov
Save