Aerosol Effects on Microstructure and Intensity of Tropical Cyclones

Daniel Rosenfeld Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by Daniel Rosenfeld in
Current site
Google Scholar
PubMed
Close
,
William L. Woodley Woodley Weather Consultants, Littleton, Colorado

Search for other papers by William L. Woodley in
Current site
Google Scholar
PubMed
Close
,
Alexander Khain Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by Alexander Khain in
Current site
Google Scholar
PubMed
Close
,
William R. Cotton Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by William R. Cotton in
Current site
Google Scholar
PubMed
Close
,
Gustavo Carrió Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

Search for other papers by Gustavo Carrió in
Current site
Google Scholar
PubMed
Close
,
Isaac Ginis Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

Search for other papers by Isaac Ginis in
Current site
Google Scholar
PubMed
Close
, and
Joseph H. Golden Golden Research and Consulting, Boulder, Colorado

Search for other papers by Joseph H. Golden in
Current site
Google Scholar
PubMed
Close
Restricted access

Improving the forecasts of the intensity of tropical cyclones (TCs) remains a major challenge. One possibility for improvement is consideration of the effects that aerosols have on tropical clouds and cyclones. The authors have been pursuing this under the Hurricane Aerosol and Microphysics Program, supported by the U.S. Department of Homeland Security. This was done through observations of aerosols and resulting cloud microphysical structure within tropical cyclones and simulating their effects using high-resolution TC models that treat cloud internal processes explicitly. In addition to atmospheric aerosols, special attention was given also to the impact of the intense sea-spray-generated aerosols and convective rolls in the hurricane boundary layer (BL) under hurricane- force winds.

The results of simulations and observations show that TC ingestion of aerosols that serve as cloud condensation nuclei can lead to significant reductions in their intensities. This is caused by redistribution of the precipitation and latent heating to more vigorous convection in the storm periphery that cools the low levels and interferes with the inflow of energy to the eyewall, hence making the eye larger and the maximum winds weaker. The microphysical effects of the pollution and dust aerosols occur mainly at the peripheral clouds. Closer to the circulation center, the hurricane-force winds raise intense sea spray that is lifted efficiently in the roll vortices that form in the BL and coalesce into rain of mostly seawater already at cloud base, which dominates the microstructure and affects the dynamics of the inner convective cloud bands.

CORRESPONDING AUTHOR: Daniel Rosenfeld, Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, E-mail: daniel.rosenfeld@huji.ac.il

Improving the forecasts of the intensity of tropical cyclones (TCs) remains a major challenge. One possibility for improvement is consideration of the effects that aerosols have on tropical clouds and cyclones. The authors have been pursuing this under the Hurricane Aerosol and Microphysics Program, supported by the U.S. Department of Homeland Security. This was done through observations of aerosols and resulting cloud microphysical structure within tropical cyclones and simulating their effects using high-resolution TC models that treat cloud internal processes explicitly. In addition to atmospheric aerosols, special attention was given also to the impact of the intense sea-spray-generated aerosols and convective rolls in the hurricane boundary layer (BL) under hurricane- force winds.

The results of simulations and observations show that TC ingestion of aerosols that serve as cloud condensation nuclei can lead to significant reductions in their intensities. This is caused by redistribution of the precipitation and latent heating to more vigorous convection in the storm periphery that cools the low levels and interferes with the inflow of energy to the eyewall, hence making the eye larger and the maximum winds weaker. The microphysical effects of the pollution and dust aerosols occur mainly at the peripheral clouds. Closer to the circulation center, the hurricane-force winds raise intense sea spray that is lifted efficiently in the roll vortices that form in the BL and coalesce into rain of mostly seawater already at cloud base, which dominates the microstructure and affects the dynamics of the inner convective cloud bands.

CORRESPONDING AUTHOR: Daniel Rosenfeld, Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, E-mail: daniel.rosenfeld@huji.ac.il
Save
  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 1337–1342.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L, 1998: A new sea spray generation function for wind speed up to 32 m sāˆ’1. J. Phys. Oceanogr., 28, 2175–2184.

  • Barnes, G. M., E. J. Zipser, D. Jorgensen, and F. Marks, 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 2125–2137.

    • Search Google Scholar
    • Export Citation
  • Bender, M. A., I. Ginis, R. Tuleya, B. Thomas, and T. Marchok, 2007: The operational GFDL coupled hurricane–ocean prediction system and a summary of its performance. Mon. Wea. Rev., 135, 3965–3989.

    • Search Google Scholar
    • Export Citation
  • Black, M. L., R. W. Burpee, and F. D. Marks, 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 53, 1887–1909.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., S. G. Lasher-Trapp, W. A. Cooper, C. A. Knight, and J. Latham, 2003: The role of giant and ultragiant nuclei in the formation of early radar echoes in warm cumulus clouds. J. Atmos. Sci., 60, 2557–2572.

    • Search Google Scholar
    • Export Citation
  • Carrió, G. G., and W. R. Cotton, 2011: Investigations of aerosol impacts on hurricanes: Virtual seeding flights. Atmos. Chem. Phys., 11, 2557–2567.

    • Search Google Scholar
    • Export Citation
  • Chin, M., and Coauthors, 2000: Atmospheric sulfur cycle simulated in the global model GOCART: Comparison with field observations and regional budgets. J. Geophys. Res., 105 (D20), 24 689–24 712.

    • Search Google Scholar
    • Export Citation
  • Clarke, A. D., S. R. Owens, and J. C. Zhou, 2006: An ultrafine sea-salt flux from breaking waves: Implications for cloud condensation nuclei in the remote marine atmosphere. J. Geophys. Res., 111, D06202, doi:10.1029/2005JD006565.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., 1972: Numerical simulation of precipitation development in supercooled cumuli—Part II. Mon. Wea. Rev., 100, 764–784.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., and Coauthors, 2003: RAMS 2001: Current status and future directions. Meteor. Atmos. Phys., 82, 5–29.

  • Cotton, W. R., H. Zhang, G. M. McFarquhar, and S. M. Saleeby, 2007: Should we consider polluting hurricanes to reduce their intensity? J. Wea. Modif., 39, 70–73.

    • Search Google Scholar
    • Export Citation
  • Danielsen, E. F., 1975: The relationship between severe weather, major dust storms and rapid large-scale cyclogenesis, Parts I and II. Subsynoptic Extratropical Weather Systems: Observations, Analysis, Modeling, and Prediction; Notes from a Colloquium: Summer 1974, Vol. 2, National Center for Atmospheric Research, 215–241.

    • Search Google Scholar
    • Export Citation
  • DeMaria, M., M. Mainelli, L. K. Shay, J. A. Knaff, and J. Kaplan, 2005: Further improvements to the Statistical Hurricane Intensity Prediction Scheme (SHIPS). Wea. Forecasting, 20, 531–543.

    • Search Google Scholar
    • Export Citation
  • Dunion, J. P., and C. S. Velden, 2004: The impact of the Saharan air layer on Atlantic tropical cyclone activity. Bull. Amer. Meteor. Soc., 85, 353–365.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–604.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., M. L. Banner, W. L. Peirson, W. Asher, and R. P. Morison, 2009: Investigation of the physical scaling of sea spray spume droplet production. J. Geophys. Res., 114, C10001, doi:10.1029/2008JC004918.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., R. L. Walko, B. Stevens, and W. R. Cotton, 1998: Simulations of marine stratocumulus using a new microphysical parameterization scheme. Atmos. Res., 47–48, 505–528.

    • Search Google Scholar
    • Export Citation
  • Foster, R. C., 2005: Why rolls are prevalent in the hurricane boundary layer. J. Atmos. Sci., 62, 2647–2661.

  • Ginis, I., A. Khain, and E. Morosovsky, 2004: Effects of large eddies on the structure of the marine boundary layer under strong wind conditions. J. Atmos. Sci., 61, 3049–3063.

    • Search Google Scholar
    • Export Citation
  • Hallett, J., and S. C. Mossop, 1974: Production of secondary particles during the riming process. Nature, 249, 26–28.

  • Jenkins, G. S., A. S. Pratt, and A. Heymsfield, 2008: Possible linkages between Saharan dust and tropical cyclone rain band invigoration in the eastern Atlantic during NAMMA-06. Geophys. Res. Lett., 35, L08815, doi:10.1029/2008GL034072.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. B., 1982: The role of giant and ultragiant aerosol particles in warm rain initiation. J. Atmos. Sci., 39, 448–460.

  • Jorgensen, D. P., and M. A. LeMone, 1989: Vertical velocity characteristics of oceanic convection. J. Atmos. Sci., 46, 621–640.

  • Jorgensen, D. P., E. J. Zipser, and M. A. LeMone, 1985: Vertical motions in intense hurricanes. J. Atmos. Sci., 42, 839–856.

  • Khain, A., 2009: Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review. Environ. Res. Lett., 4, 015004, doi:10.1088/1748-9326/4/1/015004.

    • Search Google Scholar
    • Export Citation
  • Khain, A., and B. Lynn, 2011: Simulation of tropical cyclones using a mesoscale model with spectral bin microphysics. Recent Hurricane Research—Climate, Dynamics, and Societal Impacts, A. R. Lupo, Eds., Intech, 197–227.

    • Search Google Scholar
    • Export Citation
  • Khain, A., A. Pokrovsky, M. Pinsky, A. Seifert, and V. Phillips, 2004: Simulations of effects of atmospheric aerosols on deep convective clouds using a spectral microphysics mixed-phase cumulus cloud model. Part I: Model description and possible applications. J. Atmos. Sci., 61, 2963–2982.

    • Search Google Scholar
    • Export Citation
  • Khain, A., D. Rosenfeld, and A. Pokrovsky, 2005: Aerosol impact on the dynamics and microphysics of deep convective clouds. Quart. J. Roy. Meteor. Soc., 131, 2639–2663.

    • Search Google Scholar
    • Export Citation
  • Khain, A., N. BenMoshe, and A. Pokrovsky, 2008a: Factors determining the impact of aerosols on surface precipitation from clouds: An attempt of classification. J. Atmos. Sci., 65, 1721–1748.

    • Search Google Scholar
    • Export Citation
  • Khain, A., N. Cohen, B. Lynn, and A. Pokrovsky, 2008b: Possible aerosol effects on lightning activity and structure of hurricanes. J. Atmos. Sci., 65, 3652–3667.

    • Search Google Scholar
    • Export Citation
  • Khain, A., B. Lynn, and J. Dudhia, 2010: Aerosol effects on intensity of landfalling hurricanes as seen from simulations with the WRF model with spectral bin microphysics. J. Atmos. Sci., 67, 365–384.

    • Search Google Scholar
    • Export Citation
  • Khain, A., D. Rosenfeld, A. Pokrovsky, U. Blahak, and A. Ryzhkov, 2011: The role of CCN in precipitation and hail in a mid-latitude storm as seen in simulations using a spectral (bin) microphysics model in a 2D dynamic frame. Atmos. Res., 99, 129–146.

    • Search Google Scholar
    • Export Citation
  • Koenig, L. R., 1977: The rime-splintering hypothesis of cumulus glaciation examined using a field-of-flow cloud model. Quart. J. Roy. Meteor. Soc., 103, 585–606.

    • Search Google Scholar
    • Export Citation
  • Koenig, L. R., and F. W. Murray, 1976: Ice-bearing cumulus cloud evolution: Numerical simulations and general comparison with observations. J. Appl. Meteor., 15, 747–762.

    • Search Google Scholar
    • Export Citation
  • Koren, I., Y. J. Kaufman, D. Rosenfeld, L. A. Remer, and Y. Rudich, 2005: Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett., 32, L14828, doi:10.1029/2005GL023187.

    • Search Google Scholar
    • Export Citation
  • Koren, I., L. A. Remer, O. Altaratz, J. V. Martins, and A. Davidi, 2010: Aerosol-induced changes of convective cloud anvils produce strong climate warming. Atmos. Chem. Phys., 10, 5001–5010.

    • Search Google Scholar
    • Export Citation
  • Krall, G., 2010: Potential indirect effects of aerosol on tropical cyclone development. M.S. thesis, Dept. of Atmospheric Science, Colorado State University, 109 pp.

    • Search Google Scholar
    • Export Citation
  • Krall, G., and W. R. Cotton, 2012: Potential indirect effects of aerosol on tropical cyclone intensity: Convective fluxes and cold-pool. Atmos. Chem. Phys. Discuss., 12, 351–385.

    • Search Google Scholar
    • Export Citation
  • Lamb, D., J. Hallet, and R. J. Sax, 1981: Mechanistic limitations to the latent heat during natural and artificial glaciation of deep convective clouds. Quart. J. Roy. Meteor. Soc., 107, 935–954.

    • Search Google Scholar
    • Export Citation
  • Lee, S. S., 2011: Dependence of aerosol-precipitation interactions on humidity in a multiple-cloud system. Atmos. Chem. Phys., 11, 2179–2196.

    • Search Google Scholar
    • Export Citation
  • Lensky, I., and D. Rosenfeld, 2006: The time-space exchangeability of satellite retrieved relations between cloud top temperature and particle effective radius. Atmos. Chem. Phys., 6, 2887–2894.

    • Search Google Scholar
    • Export Citation
  • Lensky, I., and R. Drori, 2007: A satellite-based parameter to monitor the aerosol impacts on convective clouds. J. Appl. Meteor. Climatol., 46, 660–666.

    • Search Google Scholar
    • Export Citation
  • Lorsolo, S., J. L. Schroeder, P. Dodge, and F. Marks, 2008: An observational study of hurricane boundary layer small-scale coherent structures. Mon. Wea. Rev., 136, 2871–2893.

    • Search Google Scholar
    • Export Citation
  • Magaritz, L., M. Pinsky, O. Krasnov, and A. Khain, 2009: Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part II: Lucky parcels. J. Atmos. Sci., 66, 781–805.

    • Search Google Scholar
    • Export Citation
  • Pinsky, M., L. Magaritz, A. Khain, O. Krasnov, and A. Sterkin, 2008: Investigation of droplet size distributions and drizzle formation using a new trajectory ensemble model. Part I: Model description and first results in nonmixing limit. J. Atmos. Sci., 65, 2064–2086.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 919–938.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., and T. N. Carlson, 1972: Vertical and areal distribution of Saharan dust over the western equatorial North Atlantic Ocean. J. Geophys. Res., 77, 5255–5265.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., E. Bonatti, C. Schubert, and T. N. Carlson, 1970: Dust in the Caribbean atmosphere traced to an African dust storm. Earth Planet. Sci. Lett., 9, 287–293.

    • Search Google Scholar
    • Export Citation
  • Reiche, C. H., and S. Lasher-Trapp, 2010: The minor importance of giant aerosol to precipitation development within small trade wind cumuli observed during RICO. Atmos. Res., 95, 386–399.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 3105–3108.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and G. Gutman, 1994: Retrieving microphysical properties near the tops of potential rain clouds by multispectral analysis of AVHRR data. Atmos. Res., 34, 259–283.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 2457–2476.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and W. L. Woodley, 2003: Closing the 50-year circle: From cloud seeding to space and back to climate change through precipitation physics. Cloud Systems, Hurricanes, and the Tropical Rainfall Measuring Mission (TRMM), Meteor. Monogr., No. 51, Amer. Meteor. Soc., 59–80.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., R. Lahav, A. P. Khain, and M. Pinsky, 2002: The role of sea-spray in cleansing air pollution over ocean via cloud processes. Science, 297, 1667–1670.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., A. Khain, B. Lynn, and W. L. Woodley, 2007: Simulation of hurricane response to suppression of warm rain by sub-micron aerosols. Atmos. Chem. Phys., 7, 3411–3424.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O'Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 1309–1313.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., M. Clavner, and R. Nirel, 2011: Pollution and dust aerosols modulating tropical cyclones intensities. Atmos. Res., 102, 66–76.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2005: A large droplet mode and prognostic number concentration of cloud droplets in the Colorado State University Regional Atmospheric Modeling System (RAMS). Part II: Sensitivity to a Colorado winter snowfall event. J. Appl. Meteor., 44, 1912–1929.

    • Search Google Scholar
    • Export Citation
  • Saleeby, S. M., and W. R. Cotton, 2008: A binned approach to cloud droplet riming implemented in a bulk microphysics model. J. Appl. Meteor. Climatol., 47, 694–703.

    • Search Google Scholar
    • Export Citation
  • Scott, B. D., and P. V. Hobbs, 1977: A theoretical study of the evolution of mixed-phase cumulus clouds. J. Atmos. Sci., 34, 812–826.

    • Search Google Scholar
    • Export Citation
  • Seifert, A., and K. D. Beheng, 2006: A two-moment cloud microphysics parameterization for mixed-phase clouds. Part II: Maritime vs. continental deep convective storms. Meteor. Atmos. Phys., 92, 67–82.

    • Search Google Scholar
    • Export Citation
  • Shao, X.-M., and Coauthors, 2005: Katrina and Rita were lit up with lightning. Eos, Trans. Amer. Geophys. Union, 86, doi:10.1029/2005EO420004.

    • Search Google Scholar
    • Export Citation
  • Shpund, J., M. Pinsky, and A. Khain, 2011: Microphysical structure of marine boundary layer under strong wind and spray formation as seen from simulations using a 2D explicit microphysical model. Part I: The impact of large eddies. J. Atmos. Sci., 68, 2366–2384.

    • Search Google Scholar
    • Export Citation
  • Simpson, J. S., G. W. Brier, and R. H. Simpson, 1967: Stormfury cumulus seeding experiment 1965: Statistical and main results. J. Atmos. Sci., 24, 508–521.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S., and W. R. Cotton, 2007: Urban aerosol impacts on downwind convective storms. J. Appl. Meteor. Climatol., 46, 828–850.

    • Search Google Scholar
    • Export Citation
  • van den Heever, S, G. G. Carrio, W. R. Cotton, P. J. DeMott, and A. J. Prenni, 2006: Impacts of nucleating aerosol on Florida convection. Part I: Mesoscale simulations. J. Atmos. Sci., 63, 1752–1775.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2005: A modeling study of the response of tropical deep convection to the increase of cloud condensation nuclei concentration: 1. Dynamics and microphysics. J. Geophys. Res., 110, D21211, doi:10.1029/2004JD005720.

    • Search Google Scholar
    • Export Citation
  • Ward, D. S., and W. R. Cotton, 2011: A method for forecasting cloud condensation nuclei using predictions of aerosol physical and chemical properties from WRF/Chem. J. Appl. Meteor. Climatol., 50, 1601–1615.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107, 8082, doi:10.1029/2001JD000380.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and the evolution of the hurricane vortex. J. Atmos. Sci., 39, 395–411.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., D. P. Jorgensen, R. A. Black, and S. L. Rosenthal, 1985: Project STORMFURY: A scientific chronicle, 1962–1983. Bull. Amer. Meteor. Soc., 66, 505–514.

    • Search Google Scholar
    • Export Citation
  • Woodcock, A. H., 1953: Salt nuclei in marine air as a function of altitude and wind force. J. Meteor., 10, 362–371.

  • Zhang, H., G. M. McFarquhar, S. M. Saleeby, and W. R. Cotton, 2007: Impacts of Saharan dust as CCN on the evolution of an idealized tropical cyclone. Geophys. Res. Lett., 34, L14812, doi:10.2029/2007GL029876.

    • Search Google Scholar
    • Export Citation
  • Zhang, H., G. M. McFarquhar, W. R. Cotton, and Y. Deng, 2009: Direct and indirect impacts of Saharan dust acting as cloud condensation nuclei on tropical cyclone eyewall development. Geophys. Res. Lett., 36, L06802, doi:10.1029/2009GL037276.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., 2010: Estimation of dissipative heating using low-level in situ aircraft observations in the hurricane boundary layer. J. Atmos. Sci., 67, 1853–1862.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., W. M. Drennan, P. G. Black, and J. R. French, 2009: Turbulent structure of the hurricane boundary layer between the outer rainbands. J. Atmos. Sci., 66, 2455–2467.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., 2008: Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies. J. Geophys. Res., 113, D17104, doi:10.1029/2007JD009643.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1683 674 50
PDF Downloads 1223 409 39