• Bechtold, P., , M. Kohler, , T. Jung, , P. Doblas-Reyes, , M. Leutbecher, , M. Rodwell, , F. Vitart & , and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales. Quart. J. Roy. Meteor. Soc., 134, 13371351.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J. & , and D. A. Randall, 2009: Structure of the Madden–Julian oscillation in the superparameterized CAM. J. Atmos. Sci., 66, 32773296.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., 1974: The scientific basis and objectives of the U.S. convective subprogram for the GATE. Bull. Amer. Meteor. Soc., 55, 304313.

    • Search Google Scholar
    • Export Citation
  • Betts, A. K., , R. W. Grover & , and M. W. Moncrieff, 1976: Structure and motion of tropical squall-lines over Venezuela. Quart. J. Roy. Meteor. Soc., 102, 395404.

    • Search Google Scholar
    • Export Citation
  • Biello, J., , A. Majda & , and M. W. Moncrieff, 2007: Meridional momentum flux and superrotation in the multiscale IPESD MJO model. J. Atmos. Sci., 64, 16361651.

    • Search Google Scholar
    • Export Citation
  • Blackburn, M., and Coauthors, 2012: The Aqua Planet Experiment (APE): Control SST simulation. J. Meteor. Soc. Japan, in press.

  • Brunet, G., and Coauthors, 2010: Collaboration of the weather and climate communities to advance subseasonal-to-seasonal prediction. Bull. Amer. Meteor. Soc., 91, 13971406.

    • Search Google Scholar
    • Export Citation
  • Carbone, R. E., , J. D. Tuttle, , D. Ahijevych & , and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056.

    • Search Google Scholar
    • Export Citation
  • Charney, J. G., 1947: The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4, 135162.

  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Dole, R. M., 2008: Linking weather and climate. Synoptic-Dynamic Meteorology and Weather Analysis and Forecasting: A Tribute to Fred Sanders, Meteor. Monogr., No. 55, Amer. Meteor. Soc., 297348.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., 1993: A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J. Atmos. Sci., 50, 889906.

    • Search Google Scholar
    • Export Citation
  • Donner, L. J., , C. J. Seman, , R. S. Hemler & , and S. M. Fan, 2001: A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: Thermodynamic and hydrological aspects in a general circulation model. J. Climate, 14, 34443463.

    • Search Google Scholar
    • Export Citation
  • Eady, E. T., 1949: Long waves and cyclone waves. Tellus, 1, 3352.

  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 58, 978997.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W. & , and M. W. Moncrieff, 2001: Large-scale organization of tropical convection in two-dimensional explicit numerical simulations. Quart. J. Roy. Meteor. Soc., 127, 445468.

    • Search Google Scholar
    • Export Citation
  • Grabowski, W. W. & , and M. W. Moncrieff, 2004: Moisture–convection feedback in the tropics. Quart. J. Roy. Meteor. Soc., 130, 30813104.

    • Search Google Scholar
    • Export Citation
  • Hamilton, R. A., , J. W. Archbold & , and C. K. M. Douglas, 1945: Meteorology of Nigeria and adjacent territory. Quart. J. Roy. Meteor. Soc., 171, 231264.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, 573 pp.

  • Houze, R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21782196.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., Jr., 2004: Mesoscale convective systems. Rev. Geophys., 42, RG4003, doi:101029/2004RG000150.

  • Houze, R. A., Jr. & , and A. Betts, 1981: Convection in GATE. Rev. Geophys., 19, 541576.

  • Hurrell, J., , G. A. Meehl, , D. Bader, , T. L. Delworth, , B. Kirtman & , and B. Wielicki, 2009: A unified modeling approach to climate system prediction. Bull. Amer. Meteor. Soc., 90, 18191832.

    • Search Google Scholar
    • Export Citation
  • Khairoutdinov, M., , D. Randall & , and C. DeMott, 2005: Simulations of the atmospheric general circulation using a cloud-resolving model as a superparameterization of physical processes. J. Atmos. Sci., 62, 21362154.

    • Search Google Scholar
    • Export Citation
  • Khouider, B. & , and A. Majda, 2008: Equatorial convectively coupled waves in a simple multicloud model. J. Atmos. Sci., 65, 33763397.

  • Khouider, B., , A. St-Cyr, , A. J. Majda & , and J. Tribbia, 2011: The MJO and convectively coupled waves in a coarseresolution GCM with a simple multicloud parameterization. J. Atmos. Sci., 68, 240264.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , M. C. Wheeler, , P. T. Haertel, , K. N. Straub & , and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22, 64136436.

  • Laing, A. G. & , and J. M. Fritsch, 1997: The global population of mesoscale convective complexes. Quart. J. Roy. Meteor. Soc., 123, 389405.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M. & , and D. E. Waliser, Eds., 2011: Intraseasonal Variability of the Atmosphere–Ocean Climate System. 2nd ed. Springer, 320 pp.

    • Search Google Scholar
    • Export Citation
  • Li, T., 2010: Monsoon climate variabilities. Why Does Climate Vary? Geophys. Monogr., Vol. 189, Amer. Geophys. Union, 2751.

  • Lin, J.-L., and Coauthors, 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19, 26652690.

    • Search Google Scholar
    • Export Citation
  • Madden, R. & , and P. Julian, 1972: Description of globalscale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., 2007: New multiscale models and selfsimilarity in tropical convection. J. Atmos. Sci., 64, 13931404.

  • Majda, A. J. & , and S. N. Stechmann, 2009a: A simple dynamical model with features of convective momentum transport. J. Atmos. Sci., 66, 373392.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J. & , and S. N. Stechmann, 2009b: The skeleton of tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA, 106, 84178422.

    • Search Google Scholar
    • Export Citation
  • Majda, A. J., , S. N. Stechmann & , and B. Khouider, 2007: An MJO analog and intraseasonal variability in a multicloud model above the equator. Proc. Nat. Acad. Sci. USA, 104, 99199924.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 1993: Gregarious tropical convection. J. Atmos. Sci., 50, 20262037.

  • Mapes, B. E. & , and R. Neale, 2011: Parameterizing convective organization to escape the entrainment dilemma. J. Adv. Model. Earth Syst., 3, M06004, doi:10.1029/2011MS000042.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., , J. Bacmeister, , M. Khairoutdinov, , C. Hannay & , and M. Zhao, 2008: Virtual field campaigns on deep tropical convection in climate models. J. Climate, 22, 244257.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2007: Primary and successive events in the Madden Julian oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453.

  • McPhaden, M. J., 2004: Evolution of the 2002/03 El Niño. Bull. Amer. Meteor. Soc., 85, 677695.

  • McPhaden, M. J., and Coauthors, 2009: RAMA—The research moored array for African–Asian–Australian monsoon analysis and prediction. Bull. Amer. Meteor. Soc., 90, 459480.

    • Search Google Scholar
    • Export Citation
  • Miura, H., , M. Satoh, , T. Nasuno, , A. T. Noda & , and K. Oouchi, 2007: A Madden–Julian oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 17631765.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 1992: Organized convective systems: Archetypal models, mass and momentum flux theory, and parameterization. Quart. J. Roy. Meteor. Soc., 118, 819850.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61, 15211538.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., 2010: The multiscale organization of moist convection and the intersection of weather and climate. Why Does Climate Vary? Geophys. Monogr., No. 189, Amer. Geophys. Union, 326, doi:10.1029/2008GM000838.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W. & , and E. Klinker, 1997: Mesoscale cloud systems in the tropical western Pacific as a process in general circulation models: A TOGA COARE case-study. Quart. J. Roy. Meteor. Soc., 123, 805828.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., , M. Shapiro, , J. Slingo & , and F. Molteni, 2007: Collaborative research at the intersection of weather and climate. WMO Bull., 56, 204211.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., , D. E. Waliser & , and J. Caughey, 2012: Progress and directions in tropical convection research. Bull. Amer. Meteor. Soc., in press.

    • Search Google Scholar
    • Export Citation
  • Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823839.

    • Search Google Scholar
    • Export Citation
  • Nasuno, T., , H. Tomita, , S. Iga & , and H. Miura 2007: Multiscale organization of convection simulated with explicit cloud processes on an aquaplanet. J. Atmos. Sci., 64, 19021921.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., , R. Cifelli & , and S. A. Rutledge, 2006: Storm morphology and rainfall characteristics of TRMM precipitation features. Mon. Wea. Rev., 134, 27022721.

    • Search Google Scholar
    • Export Citation
  • Palmer, T. N., , F. J. Doblas-Reyes, , A. Weisheimer & , and M. J. Rodwell, 2009: Toward seamless prediction: Calibration of climate change projections using seasonal forecasts. Bull. Amer. Meteor. Soc., 89, 459470.

    • Search Google Scholar
    • Export Citation
  • Petch, J., , D. Waliser, , X. Jiang, , P. K. Xavier & , and S. Woolnough, 2011: A global model intercomparison of the physical processes associated with the Madden–Julian oscillation. GEWEX News, International GEWEX Project Office, Silver Spring, MD, Vol. 21 (3), 35. [Available online at www.ucar.edu/yotc/mjodiab.docs.html/petch.etal.mjodiab.gewexnews.2011.pdf.]

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., , P. J. Neiman, , G. N. Kiladis, , K. Weickman & , and D. W. Reynolds, 2011: A multiscale observational case study of a Pacific atmospheric river exhibiting tropical–extratropical connections and a mesoscale frontal wave. Mon. Wea. Rev., 139, 11691189.

    • Search Google Scholar
    • Export Citation
  • Randall, D., , M. Khairoutdinov, , A. Arakawa & , and W. Grabowski, 2003: Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84, 15471564.

    • Search Google Scholar
    • Export Citation
  • Ray, P., and Coauthors, 2011: The role of the mean state on the initiation of the Madden–Julian oscillation. Climate Dyn., 36, 161184, doi:10.1007/s00382-010-0859-2.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B. & , and E. Duenas, 2004: The International Satellite Cloud Climatology Project (ISCCP) web site: An online resource for research. Bull. Amer. Meteor. Soc., 85, 167172.

    • Search Google Scholar
    • Export Citation
  • Satoh, M., , T. Matsuno, , H. Tomita, , H. Miura, , T. Nasuno & , and S. Iga, 2008: Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comp. Phys., 227, 34863514.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C. & , and R. A. Houze Jr., 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756.

    • Search Google Scholar
    • Export Citation
  • Shapiro, M., and Coauthors, 2010: An Earth-system prediction initiative for the twenty-first century. Bull. Amer. Meteor. Soc., 91, 13771388.

    • Search Google Scholar
    • Export Citation
  • Shukla, J., , T. N. Palmer, , R. Hagedorn, , B. Hoskins, , J. Kinter, , J. Marotzke, , M. Miller & , and J. Slingo, 2010: Toward a new generation of world climate research and computing facilities. Bull. Amer. Meteor. Soc., 91, 14071412.

    • Search Google Scholar
    • Export Citation
  • Slingo, J. M., and Coauthors, 1996: Intraseasonal oscillations in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12, 325357.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R. & , and D. E. Waliser, 2008: New approaches to understanding, simulating, and forecasting the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 89, 19171920.

    • Search Google Scholar
    • Export Citation
  • Sperber, K. R., , J. M. Slingo & , and P. M. Inness, 2011: Modeling intraseasonal variability. Intraseasonal Variability of the Atmosphere–Ocean Climate System, 2nd ed., W. K. M. Lau & and D. E. Waliser, Eds., Springer, 399432.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of spacebased observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790.

    • Search Google Scholar
    • Export Citation
  • Subramanian, A. C., , M. Jochum, , A. J. Miller, , R. Murtugudde, , R. B. Neale & , and D. E. Waliser, 2011: The Madden–Julian oscillation in CCSM4. J. Climate, 24, 62616282.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K. & , and M. W. Moncrieff, 2009: Multiscale cloud system modeling. Rev. Geophys., 47, RG4002, doi:10.1029/2008RG000276.

  • Tao, W.-K., and Coauthors, 2009: A multiscale modeling system: Developments, applications, and critical issues. Bull. Amer. Meteor. Soc., 90, 515534.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., , H. Miura, , S. Iga, , T. Nasuno & , and M. Satoh, 2005: A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophys. Res. Lett., 32, L08805, doi:10.1029/2005GL022459.

    • Search Google Scholar
    • Export Citation
  • Vitart, F. & , and F. Molteni, 2010: Simulation of the Madden–Julian oscillation and its teleconnections in the ECMWF forecast system. Quart. J. Roy. Meteor. Soc., 136, 842855.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., 2006: Predictability of tropical intraseasaonal variability. Predictability of Weather and Climate, T. N. Palmer and & R. Hagedorn, Eds., Cambridge University Press, 275305.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E. & , and M. W. Moncrieff, 2008: Year of tropical convection (YOTC) science plan. WMO/TD-No. 1452, WCRP-30, WWRP/THORPEX No. 9, 26 pp.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., , K. M. Lau, , W. Stern & , and C. Jones, 2003a: Potential predictability of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 84, 3350.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors, 2003b: AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Climate Dyn., 21, 423446.

    • Search Google Scholar
    • Export Citation
  • Waliser, D. E., and Coauthors 2012: The “Year” of Tropical Convection (May 2008–April 2010): Climate Variability and Weather Highlights. Bull. Amer. Meteor. Soc., 93, 11891218.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J. & , and R. Lukas, 1992: The Coupled Ocean– Atmosphere Response Experiment. Bull. Amer. Meteor. Soc., 73, 13771416.

  • Williamson, D. L., and Coauthors, 2012: The APE Atlas. NCAR/TN-484+STR, in press. [Available online at http://climate.ncas.ac.uk/ape/.]

  • Wu, X., , L. Deng, , X. Song, , G. Vettoretti, , W. R. Peltier & , and G. J. Zhang, 2007: Impact of a modified convective scheme on the Madden–Julian oscillation and El Niño–Southern Oscillation in a coupled climate model. Geophys. Res. Lett., 34, L16823, doi:10.1029/2007GL030637.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhou, L., , R. Neale, , M. Jochum & , and R. Murtugudde, 2012: Better Madden–Julian oscillations with improved physics: The impact of modified convection parameterizations. J. Climate, 25, 11161136.

    • Search Google Scholar
    • Export Citation
  • Zhu, Y. & , and R. E. Newell, 1994: Atmospheric rivers and bombs. Geophys. Res. Lett., 21, 19992002.

  • Zipser, E. J., 1969: The role of organized unsaturated convective downdrafts in the structure and rapid decay of an equatorial disturbance. J. Appl. Meteor., 8, 799814.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 129 129 31
PDF Downloads 61 61 18

Multiscale Convective Organization and the YOTC Virtual Global Field Campaign

View More View Less
  • 1 National Center for Atmospheric Research,* Boulder, Colorado
  • | 2 Jet Propulsion Laboratory, Pasadena, California
  • | 3 European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
  • | 4 National Center for Atmospheric Research,* Boulder, Colorado
  • | 5 World Meteorological Organization, Geneva, Switzerland
© Get Permissions
Restricted access

The Year of Tropical Convection (YOTC) project recognizes that major improvements are needed in how the tropics are represented in climate models. Tropical convection is organized into multiscale precipitation systems with an underlying chaotic order. These organized systems act as building blocks for meteorological events at the intersection of weather and climate (time scales up to seasonal). These events affect a large percentage of the world's population. Much of the uncertainty associated with weather and climate derives from incomplete understanding of how meteorological systems on the mesoscale (~1–100 km), synoptic scale (~1,000 km), and planetary scale (~10,000 km) interact with each other. This uncertainty complicates attempts to predict high-impact phenomena associated with the tropical atmosphere, such as tropical cyclones, the Madden–Julian oscillation, convectively coupled tropical waves, and the monsoons. These and other phenomena influence the extratropics by migrating out of the tropics and by the remote effects of planetary waves, including those generated by the MJO. The diurnal and seasonal cycles modulate all of the above. It will be impossible to accurately predict climate on regional scales or to comprehend the variability of the global water cycle in a warmer world without comprehensively addressing tropical convection and its interactions across space and time scales.

*The National Center for Atmospheric Research is sponsored by the National Science Foundation.

CORRESPONDING AUTHOR: Mitchell W. Moncrieff, Climate & Global Dynamics Division, National Center for Atmospheric Research (NCAR) Earth Systems Laboratory (NESL), 1850 Table Mesa Drive, Boulder, CO 80305. E-mail: moncrief@ucar.edu

The Year of Tropical Convection (YOTC) project recognizes that major improvements are needed in how the tropics are represented in climate models. Tropical convection is organized into multiscale precipitation systems with an underlying chaotic order. These organized systems act as building blocks for meteorological events at the intersection of weather and climate (time scales up to seasonal). These events affect a large percentage of the world's population. Much of the uncertainty associated with weather and climate derives from incomplete understanding of how meteorological systems on the mesoscale (~1–100 km), synoptic scale (~1,000 km), and planetary scale (~10,000 km) interact with each other. This uncertainty complicates attempts to predict high-impact phenomena associated with the tropical atmosphere, such as tropical cyclones, the Madden–Julian oscillation, convectively coupled tropical waves, and the monsoons. These and other phenomena influence the extratropics by migrating out of the tropics and by the remote effects of planetary waves, including those generated by the MJO. The diurnal and seasonal cycles modulate all of the above. It will be impossible to accurately predict climate on regional scales or to comprehend the variability of the global water cycle in a warmer world without comprehensively addressing tropical convection and its interactions across space and time scales.

*The National Center for Atmospheric Research is sponsored by the National Science Foundation.

CORRESPONDING AUTHOR: Mitchell W. Moncrieff, Climate & Global Dynamics Division, National Center for Atmospheric Research (NCAR) Earth Systems Laboratory (NESL), 1850 Table Mesa Drive, Boulder, CO 80305. E-mail: moncrief@ucar.edu
Save