• Baas, P., F. C. Bosveld, G. Lenderink, E. van Meijgaard, and A. A. M. Holtslag, 2010: How to design singlecolumn model experiments for comparison with observed nocturnal low-level jets? Quart. J. Roy. Meteor. Soc., 136, 671684.

    • Search Google Scholar
    • Export Citation
  • Baklanov, A. A., and Coauthors, 2011: The nature, theory, and modeling of atmospheric planetary boundary layers. Bull. Amer. Meteor. Soc., 92, 123128.

    • Search Google Scholar
    • Export Citation
  • Balsamo, G., A. Beljaars, K. Scipal, P. Viterbo, B. van den Hurk, , M. Hirschi, and A. K. Betts, 2009: A revised hydrology for the ECMWF model: Verification from field site to terrestrial water storage and impact in the Integrated Forecast System. J. Hydrometeor., 10, 623643.

    • Search Google Scholar
    • Export Citation
  • Basu, S., A. A. M. Holtslag, B. J. H. van de Wiel, A. F. Moene, and G.-J. Steeneveld, 2008: An inconvenient “truth” about using sensible heat flux as a surface boundary condition in models under stably stratified regimes. Acta Geophys., 56, 8899.

    • Search Google Scholar
    • Export Citation
  • Basu, S., A. A. M. Holtslag, and F. C. Bosveld, 2012: GABLS3-LES intercomparison study. Proc. ECMWF Workshop on Diurnal Cycles and the Stable Boundary Layer, Reading, England, ECMWF/WCRP, 7582. [Available online at www.ecmwf.int/publications/library/ecpublications/_pdf/workshop/2011/GABLS/Basu.pdf.]

    • Search Google Scholar
    • Export Citation
  • Bazile, E., P. Marquet, Y. Bouteloup, and F. Bouyssel, 2012: The Turbulent Kinetic Energy (TKE) scheme in the NWP models at Météo France. Proc. ECMWF Workshop on Diurnal Cycles and the Stable Boundary Layer, Reading, England, ECMWF/WCRP, 127135. [Available online at www.ecmwf.int/publications/library/ecpublications/_pdf/workshop/2011/GABLS/Bazile.pdf.]

    • Search Google Scholar
    • Export Citation
  • Beare, R. J., 2007: Boundary layer mechanisms in extratropical cyclones. Quart. J. Roy. Meteor. Soc., 133, 503515.

  • Beare, R. J., and Coauthors, 2006: An intercomparison of large-eddy simulations of the stable boundary layer. Bound.-Layer Meteor., 118, 247272.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327341.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and P. Viterbo, 1998: Role of the boundary layer in a numerical weather prediction model. Clear and Cloudy Boundary Layers, A. A. M. Holtslag and P. G. Duynkerke, Eds., Royal Netherlands Academy of Arts and Sciences, 372 pp.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., and Coauthors, 2012a: The stable boundary layer in the ECMWF model. Proc. ECMWF Workshop on Diurnal Cycles and the Stable Boundary Layer, Reading, England, ECMWF/WCRP, 110. [Available online at www.ecmwf.int/publications/library/ecpublications/_pdf/workshop/2011/GABLS/Beljaars.pdf.]

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., A. A. M. Holtslag, and G. Svensson, Eds., 2012b: Proc. ECMWF Workshop on Diurnal Cycles and the Stable Boundary Layer, Reading, England, ECMWF/WCRP, 253 pp. [Available online at www.ecmwf.int/publications/library/do/references/list/201111.]

    • Search Google Scholar
    • Export Citation
  • Bintanja, R., E. C. van der Linden, and W. Hazeleger, 2012: Boundary layer stability and Arctic climate change: A feedback study using EC-Earth. Climate Dyn., 39, 26592673, doi:10.1007/s00382-011-1272-1.

    • Search Google Scholar
    • Export Citation
  • Bosveld, F. C., P. Baas, G.-J. Steeneveld, and A. A. M. Holtslag, 2012: GABLS 3 SCM intercomparison and evaluation: What did we learn? Proc. ECMWF Workshop on Diurnal Cycles and the Stable Boundary Layer, Reading, England, ECMWF/WCRP, 91102. [Available online at www.ecmwf.int/publications/library/ecpublications/_pdf/workshop/2011/GABLS/Bosveld.pdf.]

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., and S. Park, 2009: A new moist turbulence parameterization in the Community Atmosphere Model. J. Climate, 22, 34223448.

    • Search Google Scholar
    • Export Citation
  • Brown, A. R., R. J. Beare, J. M. Edwards, A. P. Lock, S. J. Keogh, S. F. Milton, and D. N. Walters, 2008: Upgrades to the boundary-layer scheme in the Met Office numerical weather prediction model. Bound.-Layer Meteor., 128, 117132.

    • Search Google Scholar
    • Export Citation
  • Buzzi, M., M. W. Rotach, M. Raschendorfer, and A. A. M. Holtslag, 2011: Evaluation of the COSMO-SC turbulence scheme in a shear-driven stable boundary layer. Meteor. Z., 20, 335350.

    • Search Google Scholar
    • Export Citation
  • Cuxart, J., and M. A. Jiménez, 2007: Mixing processes in a nocturnal low-level jet: An LES study. J. Atmos. Sci., 64, 16661679.

  • Cuxart, J., and Coauthors, 2006: Single-column model intercomparison for a stably stratified atmospheric boundary layer. Bound.-Layer Meteor., 118, 273303.

    • Search Google Scholar
    • Export Citation
  • Delage, Y., 1997: Parameterising sub-grid scale vertical transport in atmospheric models under statically stable conditions. Bound.-Layer Meteor., 82, 2348.

    • Search Google Scholar
    • Export Citation
  • Derbyshire, S., 1999: Stable boundary-layer modeling: Established approaches and beyond. Bound.-Layer Meteor., 90, 423446.

  • Dutra, E., G. Balsamo, P. Viterbo, P. M. A. Miranda, A. C. M. Beljaars, C. Schär, and K. Elder, 2010: An improved snow scheme for the ECMWF land surface model: Description and offline validation. J. Hydrometeor., 11, 899916.

    • Search Google Scholar
    • Export Citation
  • Edwards, J. M., J. R. McGregor, M. R. Bush, and F. J. Bornemann, 2011: Assessment of numerical weather forecasts against observations from Cardington: Seasonal diurnal cycles of screen-level and surface temperatures and surface fluxes. Quart. J. Roy. Meteor. Soc., 137, 656672.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and A. A. M. Holtslag, 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 8699.

  • Fernando, H. J. S., and J. C. Weil, 2010: Whither the stable boundary layer? Bull. Amer. Meteor. Soc., 91, 14751484.

  • Fischer, M. L., D. P. Billesbach, J. A. Berry, W. J. Riley, and M. S. Torn, 2007: Spatiotemporal variations in growing season exchanges of CO2, H2O, and sensible heat in agricultural fields of the Southern Great Plains. Earth Interact., 11. [Available online at http://EarthInteractions.org.]

    • Search Google Scholar
    • Export Citation
  • Grisogono, B., 2011: The angle of the near-surface wind-turning in weakly stable boundary layers. Quart. J. Roy. Meteor. Soc., 137, 700708.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., 2003: GABLS initiates intercomparison for stable boundary layers. GEWEX News, No. 13, International GEWEX Project Office, Silver Spring, MD, 78.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., 2006: GEWEX Atmospheric Boundary-Layer Study (GABLS) on stable boundary layers. Bound.-Layer Meteor., 118, 243246.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and C.-H. Moeng, 1991: Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J. Atmos. Sci., 48, 16901698.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., and B. Boville, 1993: Local versus nonlocal boundary-layer diffusion in a global climate model. J. Climate, 6, 18251842.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., G. J. Steeneveld, and B. J. H. van de Wiel, 2007: Role of land-surface temperature feedback on model performance for the stable boundary layer. Bound.-Layer Meteor., 125, 361376.

    • Search Google Scholar
    • Export Citation
  • Holtslag, A. A. M., G. Svensson, S. Basu, B. Beare, F. C. Bosveld, and J. Cuxart, 2012: Overview of the GEWEX Atmospheric Boundary Layer Study (GABLS). Proc. ECMWF Workshop on Diurnal Cycles and the Stable Boundary Layer, Reading, England, ECMWF/WCRP, 1123. [Available online at www.ecmwf.int/publications/library/ecpublications/_pdf/workshop/2011/GABLS/Holtslag.pdf.]

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and J. Dudhia, 2012: Next-generation numerical weather prediction: Bridging parameterization, explicit clouds, and large eddies. Bull. Amer. Meteor. Soc., 93, ES6ES9.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., 2010: Accelerating progress in global atmospheric model development through improved parameterizations: Challenges, opportunities, and strategies. Bull. Amer. Meteor. Soc., 91, 869875.

    • Search Google Scholar
    • Export Citation
  • Köhler, M., M. Ahlgrimm, and A. Beljaars, 2011: Unified treatment of dry convective and stratocumulu-stopped boundary layers in the ECMWF model. Quart. J. Roy. Meteor. Soc., 137, 4357.

    • Search Google Scholar
    • Export Citation
  • Kosović, B., and J. A. Curry, 2000: A large eddy simulation study of a quasi-steady, stably stratified atmospheric boundary layer. J. Atmos. Sci., 57, 10521068.

    • Search Google Scholar
    • Export Citation
  • Kumar, V., G. Svensson, A. A. M. Holtslag, M. B. Parlange, and C. Meneveau, 2010: Impact of surface flux formulations and geostrophic forcing on large-eddy simulations of the diurnal atmospheric boundary layer flow. J. Appl. Meteor. Climatol., 49, 14961516.

    • Search Google Scholar
    • Export Citation
  • Kyselý, J., and E. Plavcová, 2012: Biases in the diurnal temperature range in Central Europe in an ensemble of regional climate models and their possible causes. Climate Dyn., 39, 12751286.

    • Search Google Scholar
    • Export Citation
  • Lindvall, J., G. Svensson, and C. Hannay, 2013: Evaluation of near-surface parameters in the two versions of the atmospheric model in CESM1 using flux station observations. J. Climate, 26, 2644.

    • Search Google Scholar
    • Export Citation
  • Louis, J.-F., 1979: A parametric model of vertical eddy fluxes in the atmosphere. Bound.-Layer Meteor., 17, 187202.

  • Mahrt, L., 1985: Vertical structure and turbulence in the very stable boundary layer. J. Atmos. Sci., 42, 23332349.

  • Mahrt, L., 1987: Grid-averaged surface fluxes. Mon. Wea. Rev., 115, 15501560.

  • Mahrt, L., and D. Vickers, 2006: Mixing in very stable conditions. Bound.-Layer Meteor., 119, 1939.

  • Martinez, D., M. A. Jimenez, J. Cuxart, and L. Mahrt, 2010: Heterogeneous nocturnal cooling in a large basin under very stable conditions. Bound.-Layer Meteor., 137, 97113.

    • Search Google Scholar
    • Export Citation
  • Mauritsen, T., and G. Svensson, 2007: Observations of stably stratified shear-driven atmospheric turbulence at low and high Richardson numbers. J. Atmos. Sci., 64, 645655.

    • Search Google Scholar
    • Export Citation
  • McCabe, A., and A. R. Brown, 2007: The role of surface heterogeneity in modelling the stable boundary layer. Bound.-Layer Meteor., 122, 517534.

    • Search Google Scholar
    • Export Citation
  • McNider, R. T., D. E. England, M. J. Friedman, and X. Shi, 1995: Predictability of the stable atmospheric boundary layer. J. Atmos. Sci., 52, 16021614.

    • Search Google Scholar
    • Export Citation
  • McNider, R. T., and Coauthors, 2012: Response and sensitivity of the nocturnal boundary layer over land to added longwave radiative forcing. J. Geophys. Res., 117, D14106, doi:10.1029/2012JD017578.

    • Search Google Scholar
    • Export Citation
  • Mearns, L. O., and Coauthors, 2012: The North American Regional Climate Change Assessment Program: Overview of phase I results. Bull. Amer. Meteor. Soc., 93, 13371362.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1974: A hierarchy of turbulence closure models for planetary boundary layers. J. Atmos. Sci., 31, 17911806.

    • Search Google Scholar
    • Export Citation
  • Moene, A. F., P. Baas, F. C. Bosveld, and S. Basu, 2011: LES model intercomparisons for the stable atmospheric boundary layer. Quality and Reliability of Large-Eddy Simulations II, M. V. Salvetti et al., Eds., ERCOFTAC Series, Vol. 16, Springer, 141148.

    • Search Google Scholar
    • Export Citation
  • Müller, M. D., M. Masbou, and A. Bott, 2010: Three-dimensional fog forecasting in complex terrain. Quart. J. Roy. Meteor. Soc., 136, 21892202.

    • Search Google Scholar
    • Export Citation
  • Neggers, R. A. J., A. P. Siebesma, and T. Heus, 2012: Continuous single-column model evaluation at a permanent meteorological supersite. Bull. Amer. Meteor. Soc., 93, 13891400.

    • Search Google Scholar
    • Export Citation
  • Poulos, G. S., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555581.

    • Search Google Scholar
    • Export Citation
  • Randall, D., and Coauthors, 2003: Confronting models with data: The GEWEX Cloud Systems Study. Bull. Amer. Meteor. Soc., 84, 455469.

  • Reynolds, O., 1895: On the dynamical theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. Roy. Soc. London, A186, 123164.

    • Search Google Scholar
    • Export Citation
  • Sandu, I., A. Beljaars, and G. Balsamo, 2012: Experience with the representation of stable conditions in the ECMWF model. Proc. ECMWF Workshop on Diurnal Cycles and the Stable Boundary Layer, Reading, England, ECMWF/WCRP, 117126. [Available online at www.ecmwf.int/publications/library/ecpublications/_pdf/workshop/2011/GABLS/Sandu.pdf.]

    • Search Google Scholar
    • Export Citation
  • Sandu, I., A. Beljaars, P. Bechtold, T. Mauritsen, and G. Balsamo, 2013: Why is it so difficult to represent stably stratified conditions in NWP models? J. Adv. Model. Earth Syst., 5, doi:10.1002/jame.20013.

    • Search Google Scholar
    • Export Citation
  • Sinclair, V. A., S. E. Belcher, and S. L. Gray, 2010: Synoptic controls on boundary-layer characteristics. Bound.-Layer Meteor., 134, 387409.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., B. J. H. van de Wiel, and A. A. M. Holtslag, 2006a: Modelling the Arctic stable boundary layer and its coupling to the surface. Bound.- Layer Meteor., 118, 357378.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., B. J. H. van de Wiel, and A. A. M. Holtslag, 2006b: Modeling the evolution of the atmospheric boundary layer coupled to the land surface for three contrasting nights in CASES-99. J. Atmos. Sci., 63, 920935.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., A. A. M. Holtslag, C. J. Nappo, B. J. H. van de Wiel, and L. Mahrt, 2008a: Exploring the role of small-scale terrain drag on stable boundary layers over land. J. Appl. Meteor. Climatol., 47, 25182530.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., T. Mauritsen, E. I. F. de Bruijn, J. Vilà-Guerau de Arellano, G. Svensson, and A. A. M. Holtslag, 2008b: Evaluation of limited-area models for the representation of the diurnal cycle and contrasting nights in CASES-99. J. Appl. Meteor. Climatol., 47, 869887.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., A. A. M. Holtslag, R. T. McNider, and R. A. Pielke Sr., 2011a: Screen level temperature increase due to higher atmospheric carbon dioxide in calm and windy nights revisited. J. Geophys. Res., 116, D02122, doi:10.1029/2010JD014612.

    • Search Google Scholar
    • Export Citation
  • Steeneveld, G. J., L. F. Tolk, A. F. Moene, O. K. Hartogensis, W. Peters, and A. A. M. Holtslag, 2011b: Confronting the WRF and RAMS mesoscale models with innovative observations in the Netherlands: Evaluating the boundary-layer heat budget. J. Geophys. Res., 116, D23114, doi:10.1029/2011JD016303.

    • Search Google Scholar
    • Export Citation
  • Sterk, H. A. M., G. J. Steeneveld, and A. A. M. Holtslag, 2013: The role of snow-surface coupling, radiation, and turbulent mixing in modeling a stable boundary layer over Arctic sea ice. J. Geophys. Res., 118, 11991217, doi:10.1002/jgrd.50158.

    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., B. Galperin, and V. Perov, 2005: Application of a new spectral theory of stably stratified turbulence to atmospheric boundary layers over sea ice. Bound.-Layer Meteor., 117, 231257.

    • Search Google Scholar
    • Export Citation
  • Svensson, G., and A. A. M. Holtslag, 2009: Modeling the turning of wind and the related momentum fluxes in the stable boundary layer. Bound.-Layer Meteor., 132, 261277.

    • Search Google Scholar
    • Export Citation
  • Svensson, G., and Coauthors, 2011: Evaluation of the diurnal cycle in the atmospheric boundary layer over land as represented by a variety of single column models— The second GABLS experiment. Bound.-Layer Meteor., 140, 177206.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and Coauthors, 2008: Parameterization of the atmospheric boundary layer: A view from just above the inversion. Bull. Amer. Meteor. Soc., 89, 453458.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and Coauthors, 2005: Modeling the Arctic Boundary Layer: An evaluation of six ARCMIP regional-scale models with data from the SHEBA project. Bound.-Layer Meteor., 117, 337381.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, O. K. Hartogensis, H. A. R. DeBruin, and A. A. M. Holtslag, 2003: Intermittent turbulence and oscillations in the stable boundary layer over land. Part III: A classification for observations during CASES-99. J. Atmos. Sci., 60, 25092522.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, G. J. Steeneveld, O. K. Hartogensis, and A. A. M. Holtslag, 2007: Predicting the collapse of turbulence in stably stratified boundary layers. Flow Turbul. Combust., 79, 251274.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, G. J. Steeneveld, P. Baas, F. C. Bosveld, and A. A. M. Holtslag, 2010: A conceptual view on inertial oscillations and nocturnal low-level jets. J. Atmos. Sci., 67, 26792689.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, and H. J. J. Jonker, 2012a: The cessation of continuous turbulence as precursor of the very stable nocturnal boundary layer. J. Atmos. Sci., 69, 30973115.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J. H., A. F. Moene, H. J. J. Jonker, P. Baas, S. Basu, J. M. M. Donda, J. Sun, and A. A. M. Holtslag, 2012b: The minimum wind speed for sustainable turbulence in the nocturnal boundary layer. J. Atmos. Sci., 69, 31163127.

    • Search Google Scholar
    • Export Citation
  • Van den Hurk, B., M. Best, P. Dirmeyer, A. Pitman, J. Polcher, and J. Santanello, 2011: Acceleration of land surface model development over a decade of GLASS. Bull. Amer. Meteor. Soc., 92, 15931600.

    • Search Google Scholar
    • Export Citation
  • Van Heerwaarden, C. C., J. Vila, A. F. Moene, and A. A. M. Holtslag, 2009: Interactions between dryair entrainment, surface evaporation and convective boundary-layer development. Quart. J. Roy. Meteor. Soc., 135, 12771291.

    • Search Google Scholar
    • Export Citation
  • Viterbo, P., A. Beljaars, J.-F. Mahfouf, and J. Teixeira, 1999: The representation of soil moisture freezing and its impact on the stable boundary layer. Quart. J. Roy. Meteor. Soc., 125, 24012426.

    • Search Google Scholar
    • Export Citation
  • Weil, J. C., 2010: Stable boundary layer modeling for local and regional-scale meteorological models. 19th Symp. on Boundary Layers and Turbulence, Keystone, CO, Amer. Meteor. Soc., 6.2. [Available online at https://ams.confex.com/ams/19Ag19BLT9Urban/techprogram/paper_173489.htm.]

    • Search Google Scholar
    • Export Citation
  • Willmott, C. J., and K. Matsuura, cited 2001: Terrestrial air temperature and precipitation: Monthly and annual climatologies (version 3.02). [Available online at http://climate.geog.udel.edu/~climate/html_pages/README.ghcn_clim2.html.]

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 393 pp.

  • Zhang, Y., V. Dulière, P. W. Mote, and E. P. Salathé, 2009: Evaluation of WRF and HadRM mesoscale climate simulations over the U.S. Pacific Northwest. J. Climate, 22, 55115526.

    • Search Google Scholar
    • Export Citation
  • Zhou, L., R. Dickinson, A. Dai, and P. Dirmeyer, 2010: Detection and attribution of anthropogenic forcing to diurnal temperature range changes from 1950 to 1999: Comparing multi-model simulations with observations. Climate Dyn., 35, 12891307.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., T. Elperin, N. Kleeorin, I. Rogachevskii, I. Esau, T. Mauritsen, and M. W. Miles, 2008: Turbulence energetics in stably stratified geophysical flows: Strong and weak mixing regimes. Quart. J. Roy. Meteor. Soc., 134, 793799.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1458 701 20
PDF Downloads 1238 567 16

Stable Atmospheric Boundary Layers and Diurnal Cycles: Challenges for Weather and Climate Models

View More View Less
  • 1 Meteorology and Air Quality Section, Wageningen University, Wageningen, Netherlands
  • | 2 Department of Meteorology, and Bert Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
  • | 3 Royal Netherlands Meteorological Institute, De Bilt, Netherlands
  • | 4 Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, North Carolina
  • | 5 Exeter University, Exeter, United Kingdom
  • | 6 European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
  • | 7 Royal Netherlands Meteorological Institute, De Bilt, Netherlands
  • | 8 Departament de Física, Grup de Meteorologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
  • | 9 Department of Meteorology, and Bert Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
  • | 10 Meteorology and Air Quality Section, Wageningen University, Wageningen, Netherlands
  • | 11 Department of Meteorology, and Bert Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
  • | 12 Eindhoven Technical University, Eindhoven, Netherlands
Restricted access

The representation of the atmospheric boundary layer is an important part of weather and climate models and impacts many applications such as air quality and wind energy. Over the years, the performance in modeling 2-m temperature and 10-m wind speed has improved but errors are still significant. This is in particular the case under clear skies and low wind speed conditions at night as well as during winter in stably stratified conditions over land and ice. In this paper, the authors review these issues and provide an overview of the current understanding and model performance. Results from weather forecast and climate models are used to illustrate the state of the art as well as findings and recommendations from three intercomparison studies held within the Global Energy and Water Exchanges (GEWEX) Atmospheric Boundary Layer Study (GABLS). Within GABLS, the focus has been on the examination of the representation of the stable boundary layer and the diurnal cycle over land in clear-sky conditions. For this purpose, single-column versions of weather and climate models have been compared with observations, research models, and large-eddy simulations. The intercomparison cases are based on observations taken in the Arctic, Kansas, and Cabauw in the Netherlands. From these studies, we find that even for the noncloudy boundary layer important parameterization challenges remain.

CORRESPONDING AUTHOR: Prof. Bert Holtslag, Meteorology and Air Quality, Wageningen University, P.O. Box 47, 6700 AA Wageningen, Netherlands, E-mail: bert.holtslag@wur.nl

The representation of the atmospheric boundary layer is an important part of weather and climate models and impacts many applications such as air quality and wind energy. Over the years, the performance in modeling 2-m temperature and 10-m wind speed has improved but errors are still significant. This is in particular the case under clear skies and low wind speed conditions at night as well as during winter in stably stratified conditions over land and ice. In this paper, the authors review these issues and provide an overview of the current understanding and model performance. Results from weather forecast and climate models are used to illustrate the state of the art as well as findings and recommendations from three intercomparison studies held within the Global Energy and Water Exchanges (GEWEX) Atmospheric Boundary Layer Study (GABLS). Within GABLS, the focus has been on the examination of the representation of the stable boundary layer and the diurnal cycle over land in clear-sky conditions. For this purpose, single-column versions of weather and climate models have been compared with observations, research models, and large-eddy simulations. The intercomparison cases are based on observations taken in the Arctic, Kansas, and Cabauw in the Netherlands. From these studies, we find that even for the noncloudy boundary layer important parameterization challenges remain.

CORRESPONDING AUTHOR: Prof. Bert Holtslag, Meteorology and Air Quality, Wageningen University, P.O. Box 47, 6700 AA Wageningen, Netherlands, E-mail: bert.holtslag@wur.nl
Save