• Bechtold, P., , M. Köhler, , T. Jung, , F. Doblas-Reyes, , M. Leutbecher, , M. J. Rodwell, , F. Vitart, , and G. Balsamo, 2008: Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time scales. Quart. J. Roy. Meteor. Soc., 134, 13371351.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64, 23322354.

    • Search Google Scholar
    • Export Citation
  • Benedict, J. J., , and D. A. Randall, 2009: Structure of the Madden–Julian oscillation in the superparameterized CAM. J. Atmos. Sci., 66, 32773296.

    • Search Google Scholar
    • Export Citation
  • Brown, R. G., , and C. Zhang, 1997: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE. J. Atmos. Sci., 54, 27602774.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., , Y. Chen, , D. Kim, , and M.-S. Yai, 2012: The MJO transition from shallow to deep convection in CLOUDSAT/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770.

    • Search Google Scholar
    • Export Citation
  • DeWitt, H. L., , D. J. Coffman, , K. J. Schulz, , W. A. Brewer, , T. S. Bates, , and P. K. Quinn, 2013: Atmospheric aerosol properties over the equatorial Indian Ocean and the impact of the Madden–Julian oscillation. J. Geophys. Res., 118, 57365749, doi:10.1002/jgrd.50419.

    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., , and J. Vialard, 2007: Indo-Pacific sea surface temperature perturbations associated with intraseasonal oscillations of tropical convection. J. Climate, 18, 30563082.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., , E. F. Bradley, , J. E. Hare, , A. A. Grachev, , and J. B. Edson, 2003: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591.

    • Search Google Scholar
    • Export Citation
  • Feng, Z., , X. Dong, , and B. Xi, 2009: A method to merge WSR-88D data with ARM SGP millimeter cloud radar data by studying deep convective systems. J. Atmos. Oceanic Technol., 26, 958971.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., and Coauthors, 2010: A framework for assessing operational Madden–Julian oscillation: A CLIVAR MJO working group project. Bull. Amer. Meteor. Soc., 91, 12471258.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., , P. E. Roundy, , C. J. Schreck III, , A. Vintzileos, , and C. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 141, 41734196.

    • Search Google Scholar
    • Export Citation
  • Han, W., , P. Webster, , R. Lukas, , P. Hacker, , and A. Hu, 2004: Impact of atmospheric intraseasonal variability in the Indian Ocean: Low-frequency rectification in equatorial surface current and transport. J. Phys. Oceanogr., 34, 13501372.

    • Search Google Scholar
    • Export Citation
  • Hung, M.-P., , J.-L. Lin, , W. Wang, , D. Kim, , T. Shinoda, , S. J. Weaver, 2013: MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J. Climate, 26, 61856214.

    • Search Google Scholar
    • Export Citation
  • ICTP, 2006: Organization and maintenance of tropical convection and the Madden Julian Oscillation. THORPEX/WCRP/ICTP Workshop Meeting Rep., 13 pp. [Available online at www.ucar.edu/na-thorpex/documents/MJO_Workshop_Report21.06.pdf.]

    • Search Google Scholar
    • Export Citation
  • Izumo, T., , S. Masson, , J. Vialard, , C. de Boyer Montegut, , S. K. Behera, , G. Madec, , K. Takahashi, , and T. Yamagata, 2010: Low and high frequency Madden-Julian oscillations in austral summer: Interannual variations. Climate Dyn., 35, 669683.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., , T. M. Rickenbach, , S. A. Rutledge, , P. E. Ciesielski, , and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418.

    • Search Google Scholar
    • Export Citation
  • Katsumata, M., , R. H. Johnson, , and P. E. Ciesielski, 2009: Observed synoptic-scale variability during the developing phase of an ISO over the Indian Ocean during MISMO. J. Atmos. Sci., 66, 34343448.

    • Search Google Scholar
    • Export Citation
  • Katsumata, M., , P. E. Ciesielski, , and R. H. Johnson, 2011: Evaluation of budget analyses during MISMO. J. Appl. Meteor. Climatol., 50, 241254.

    • Search Google Scholar
    • Export Citation
  • Kemball-Cook, S., , and B. C. Weare, 2001: The onset of convection in the Madden–Julian oscillation. J. Climate, 14, 780793.

  • Khouider, B., , and A. Majda, 2006: Multicloud convective parameterizations with crude vertical structure. Theor. Comput. Fluid Dyn., 20, 351375.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., , K. H. Straub, , and P. Haertel, 2005: Zonal and vertical structure of the Madden–Julian oscillation. J. Atmos. Sci., 62, 27902809.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., 2008: Modeling the interaction between cumulus convection and linear gravity waves using a limited-domain cloud system–resolving model. J. Atmos. Sci., 65, 576591.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., , and C. S. Bretherton, 2006: A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection. J. Atmos. Sci., 63, 18951909.

    • Search Google Scholar
    • Export Citation
  • Lau, K. M., , and H. T. Wu, 2010: Characteristics of precipitation, cloud, and latent heating associated with the Madden–Julian oscillation. J. Climate, 23, 504518.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., , and D. E. Waliser, Eds., 2012: Intraseasonal Variability of the Atmosphere-Ocean Climate System. 2nd ed. Springer, 613 pp.

    • Search Google Scholar
    • Export Citation
  • Li, C., , X. Jia, , J. Ling, , W. Zhou, , and C. Zhang, 2009: Sensitivity of MJO simulations to convective heating profiles. Climate Dyn., 32, 167187.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and Coauthors, 2010: AMIE (ARM MJO Investigation Experiment): Observations of the Madden-Julian oscillation for modeling studies science plan. DOE/ARM Tech. Rep. DOE/SC-ARM-10-007, 25 pp. [Available online at www.arm.gov/publications/programdocs/doe-sc-arm-10-007.pdf.]

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and Coauthors, 2011: ARM MJO investigation experiment on Gan Island (AMIE-Gan) science plan. DOE/ARM Tech. Rep. DOE/SC-ARM-11-005, 63 pp. [Available online at www.arm.gov/publications/programdocs/doe-sc-arm-11-005.pdf.]

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., , and P. R. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci., 29, 11091123.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22, 711729.

    • Search Google Scholar
    • Export Citation
  • Maloney, E. D., , and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17, 43684386.

    • Search Google Scholar
    • Export Citation
  • Mapes, B. E., 2000: Convective inhibition, subgrid-scale triggering energy, and stratiform instability in a toy tropical wave model. J. Atmos. Sci., 57, 15151535.

    • Search Google Scholar
    • Export Citation
  • Matthews, A. J., 2008: Primary and successive events in the Madden-Julian oscillation. Quart. J. Roy. Meteor. Soc., 134, 439453.

  • McPhaden, M. J., and Coauthors, 2009: RAMA: The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90, 459480.

    • Search Google Scholar
    • Export Citation
  • Meyers, G., , and R. Boscolo, 2006: The Indian Ocean Observing System (IndOOS). CLIVAR Exchanges, No. 38, International CLIVAR Project Office, Southampton, United Kingdom, 23.

    • Search Google Scholar
    • Export Citation
  • Miura, H., , M. Satoh, , T. Nasuno, , A. T. Noda, , and K. Oouchi, 2007: A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model. Science, 318, 17631765.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., , and I. M. Held, 1987: Modeling tropical convergence based on the moist static energy budget. Mon. Wea. Rev., 115, 312.

    • Search Google Scholar
    • Export Citation
  • Peters, M. E., , and C. S. Bretherton, 2006: Structure of tropical variability from a vertical mode perspective. Theor. Comp. Fluid Dyn., 20, 501524, doi:10.1007/s00162-006-0034-x.

    • Search Google Scholar
    • Export Citation
  • Peters, O., , and J. D. Neelin, 2006: Critical phenomena in atmospheric precipitation. Nat. Phys., 2, 393396.

  • Pinkel, R., , M. A. Goldin, , J. A. Smith, , O. M. Sun, , A. A. Aja, , M. N. Bui, , and T. Hughen, 2011: The Wirewalker: A vertically profiling instrument carrier powered by ocean waves. J. Atmos. Oceanic Technol., 28, 426435.

    • Search Google Scholar
    • Export Citation
  • Raymond, D. J., 2001: A new model of the Madden–Julian oscillation. J. Atmos. Sci., 58, 28072819.

  • Raymond, D. J., , and Ž. Fuchs, 2009: Moisture modes and the Madden–Julian oscillation. J. Climate, 22, 30313046.

  • Raymond, D. J., , S. L. Sessions, , A. H. Sobel, , and Ž. Fuchs, 2009: The mechanics of gross moist stability. J. Adv. Model. Earth Syst., 1, 9, doi:10.3894/JAMES.2009.1.9.

    • Search Google Scholar
    • Export Citation
  • Riley, E. M., , B. E. Mapes, , and S. N. Tulich, 2011: Clouds associated with the Madden–Julian oscillation: A new perspective from CloudSat. J. Atmos. Sci., 68, 30323051.

    • Search Google Scholar
    • Export Citation
  • Saji, N. H., , B. N. Goswami, , P. N. Vinayachandran, , and T. Yamagata, 1999: A dipole mode in the tropical Indian Ocean. Nature, 401, 360363.

    • Search Google Scholar
    • Export Citation
  • Schott, F. A., , S.-P. Xie, , and J. P. McCreary, 2009: Indian Ocean circulation and climate variability. Rev. Geophys., 47, RG1002, doi:10.1029/2007RG000245.

    • Search Google Scholar
    • Export Citation
  • Seo, K.-H., , and W. Wang, 2010: The Madden–Julian oscillation simulated in the NCEP Climate Forecast System model: The importance of stratiform heating. J. Climate, 23, 47704793.

    • Search Google Scholar
    • Export Citation
  • Sobel, A. H., , E. D. Maloney, , G. Bellon, , and D. M. Frierson, 2008: The role of surface heat fluxes in tropical intraseasonal oscillations. Nat. Geosci., 1, 653657.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., , P. J. Webster, , R. H. Johnson, , R. Engelen, , and T. S. L'Ecuyer, 2004: Observational evidence for the mutual regulation of the tropical hydrological cycle and tropical sea surface temperatures. J. Climate, 17, 22132224.

    • Search Google Scholar
    • Export Citation
  • Sugiyama, M., 2009: The moisture mode in the quasi-equilibrium tropical circulation model. Part I: Analysis based on the weak temperature gradient approximation. J. Atmos. Sci., 66, 15071523.

    • Search Google Scholar
    • Export Citation
  • Thayer-Calder, K., , and D. A. Randall, 2009: The role of convective moistening in the Madden–Julian oscillation. J. Atmos. Sci., 66, 32973312.

    • Search Google Scholar
    • Export Citation
  • Tomita, H., 2008: A stretched icosahedral grid by a new grid transformation. J. Meteor. Soc. Japan, 86A, 107119.

  • Vialard, J., , G. R. Foltz, , M. J. McPhaden, , J. P. Duvel, , and C. de Boyer Monégut, 2008: Strong Indian Ocean sea surface temperature signals associated with the Madden-Julian oscillation in late 2007 and early 2008. Geophys. Res. Lett., 36, L19608, doi:10.1029/2008GL035238.

    • Search Google Scholar
    • Export Citation
  • Vialard, J., and Coauthors, 2009: Cirene: Air–sea interactions in the Seychelles-Chagos thermocline ridge region. Bull. Amer. Meteor. Soc., 90, 4561.

    • Search Google Scholar
    • Export Citation
  • Vitart, F., , and F. Molteni, 2010: Simulation of the Madden-Julian oscillation and its teleconnections in the ECMWF forecast system. Quart. J. Roy. Meteor. Soc., 136, 842855.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., , C. N. Long, , J. H. Mather, , and X. D. Liu, 2010: Convective signals from surface measurements at ARM Tropical Western Pacific site: Manus. Climate Dyn., 36, 431449.

    • Search Google Scholar
    • Export Citation
  • Webster, P. J., 1983: Large-scale structure of the tropical atmosphere. Large-Scale Dynamical Processes in the Atmosphere, B. J. Hoskins, and R. P. Pearce, Eds., Academic Press, 235275.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and K. M. Weickmann, 2001: Real-time monitoring and prediction of modes of coherent synoptic to intraseasonal tropical variability. Mon. Wea. Rev., 129, 26772694.

    • Search Google Scholar
    • Export Citation
  • Wheeler, M., , and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 19171932.

    • Search Google Scholar
    • Export Citation
  • Wu, Z., 2003: A shallow CISK, deep equilibrium mechanism for the interaction between large-scale convection and large-scale circulations in the tropics. J. Atmos. Sci., 60, 377392.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1973: An equatorial jet in the Indian Ocean. Science, 181, 262264.

  • Xie, S., , T. Hume, , C. Jakob, , S. Klein, , R. McCoy, , and M. Zhang, 2010: Observed large-scale structures and diabatic heating and drying profiles during TWPICE. J. Climate, 23, 5779.

    • Search Google Scholar
    • Export Citation
  • Yasunaga, K., , K. Yoneyama, , Q. Moteki, , M. Fujita, , Y. N. Takayabu, , J. Suzuki, , T. Ushiyama, , and B. E. Mapes, 2010: Characteristics of 3–4-day and 6–8-day period disturbances observed over the tropical Indian Ocean. Mon. Wea. Rev., 138, 41584174.

    • Search Google Scholar
    • Export Citation
  • Yoneyama, K., and Coauthors, 2008: Mismo field experiment in the equatorial Indian Ocean. Bull. Amer. Meteor. Soc., 89, 18891903.

  • Zhang, C., 2001: Double ITCZs. J. Geophys. Res., 106, 11 78511 792.

  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870.

  • Zhang, C., , and M. Dong, 2004: Seasonality in the Madden– Julian oscillation. J. Climate, 17, 31693180.

  • Zhang, C., , and S. M. Hagos, 2009: Bi-modal structure and variability of large-scale diabatic heating in the tropics. J. Atmos. Sci., 66, 36213640.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 96 96 38
PDF Downloads 0 0 0

Tracking Pulses of the Madden–Julian Oscillation

View More View Less
  • 1 Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
  • 2 University of Miami, Miami, Florida
  • 3 Pacific Northwest National Laboratory, Richland, Washington
© Get Permissions
Restricted access

An international field campaign aiming at atmospheric and oceanic processes associated with the Madden–Julian oscillation (MJO) was conducted in and around the tropical Indian Ocean during October 2011–March 2012. The objective of the field campaign was to collect observations urgently needed to expedite the progress of understanding the key processes of the MJO, focusing on its convective initiation but also including propagation and maturation, and ultimately to improve skills of numerical simulation and prediction of the MJO. Primary targets of the field campaign included interaction of atmospheric deep convection with its environmental moisture, evolution of cloud populations, and air– sea interaction. Several MJO events were captured by ground-based, airborne, and oceanic instruments with advanced observing technology. Numerical simulations and real-time forecasts were integrated components of the field campaign in its design and operation. Observations collected during the campaign provide unprecedented opportunities to reveal detailed processes of the MJO and to assist evaluation, improvement, and development of weather and climate models. The data policy of the campaign encourages the broad research community to use the field observations to advance the MJO study.

CORRESPONDING AUTHOR: Kunio Yoneyama, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan, E-mail: yoneyamak@jamstec.go.jp

A supplement to this article is available online (10.1175/BAMS-D-12-00157.2)

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

An international field campaign aiming at atmospheric and oceanic processes associated with the Madden–Julian oscillation (MJO) was conducted in and around the tropical Indian Ocean during October 2011–March 2012. The objective of the field campaign was to collect observations urgently needed to expedite the progress of understanding the key processes of the MJO, focusing on its convective initiation but also including propagation and maturation, and ultimately to improve skills of numerical simulation and prediction of the MJO. Primary targets of the field campaign included interaction of atmospheric deep convection with its environmental moisture, evolution of cloud populations, and air– sea interaction. Several MJO events were captured by ground-based, airborne, and oceanic instruments with advanced observing technology. Numerical simulations and real-time forecasts were integrated components of the field campaign in its design and operation. Observations collected during the campaign provide unprecedented opportunities to reveal detailed processes of the MJO and to assist evaluation, improvement, and development of weather and climate models. The data policy of the campaign encourages the broad research community to use the field observations to advance the MJO study.

CORRESPONDING AUTHOR: Kunio Yoneyama, Japan Agency for Marine-Earth Science and Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan, E-mail: yoneyamak@jamstec.go.jp

A supplement to this article is available online (10.1175/BAMS-D-12-00157.2)

This article is included in the DYNAMO/CINDY/AMIE/LASP: Processes, Dynamics, and Prediction of MJO Initiation special collection.

Supplementary Materials

    • Supplemental Materials (PDF 542.23 KB)
Save