• Bartalis, Z., , W. Wagner, , V. Naeimi, , S. Hasenauer, , K. Scipal, , H. Bonekamp, , J. Figa, , and C. Anderson, 2007: Initial soil moisture retrievals from the METOPA Advanced Scatterometer (ASCAT). Geophys. Res. Lett., 34, L20401, doi:10.1029/2007GL031088.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., , K. Yang, , W. Tang, , J. Qin, , and L. Zhao, 2012: Parameterizing soil organic carbon's impacts on soil porosity and thermal parameters for Eastern Tibet grasslands. Sci. China Earth Sci., 55, 10011011.

    • Search Google Scholar
    • Export Citation
  • Crow, W. T., and Coauthors, 2012: Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys., 50, RG2002, doi:10.1029/2011RG000372.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2011: The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15, 16751698.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE, 98, 704716.

  • Fujii, H., , and T. Koike, 2001: Development of a TRMM/TMI algorithm for precipitation in the Tibetan Plateau by considering effects of land surface emissivity. J. Meteor. Soc. Japan, 79, 475483.

    • Search Google Scholar
    • Export Citation
  • Gao, Z., , N. Chae, , J. Kim, , J. Hong, , T. Choi, , and H. Lee, 2004: Modeling of surface energy partitioning, surface temperature, and soil wetness in the Tibetan prairie using the Simple Biosphere Model 2 (SiB2). J. Geophys. Res., 109, D06102, doi:10.1029/2003JD004089.

    • Search Google Scholar
    • Export Citation
  • Jacobsen, O. H., , and P. Schjønning, 1993: A laboratory calibration of time domain reflectometry for soil water measurement including effects of bulk density and texture. J. Hydrol., 151, 147157.

    • Search Google Scholar
    • Export Citation
  • Jin, R., , X. Li, , and T. Che, 2009: A decision tree algorithm for surface soil freeze/thaw classification over China using SSM/I brightness temperature. Remote Sens. Environ., 113, 26512660, doi:10.1016/j.rse.2009.08.003.

    • Search Google Scholar
    • Export Citation
  • Kawanishi, T., and Coauthors, 2003: The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA's contribution to the EOS for global energy and water cycle studies. IEEE Trans. Geosci. Remote Sens., 41, 184194.

    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., , P. Waldteufel, , J. P. Wigneron, , J. Martinuzzi, , J. Font, , and M. Berger, 2001: Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens., 39, 17291735.

    • Search Google Scholar
    • Export Citation
  • Koike, T., , Y. Nakamura, , I. Kaihotsu, , G. Davva, , N. Matsuura, , K. Tamagawa, , and H. Fujii, 2004: Development of an Advanced Microwave Scanning Radiometer (AMSR-E) algorithm of soil moisture and vegetation water content. Annu. J. Hydraul. Eng., Japan Soc. Civil Eng., 48, 217222.

    • Search Google Scholar
    • Export Citation
  • Li, X., , and T. Koike, 2003: Frozen soil parameterization in SiB2 and its validation with GAME-Tibet observations. Cold Reg. Sci. Technol., 36, 165182.

    • Search Google Scholar
    • Export Citation
  • Li, X., , R. Jin, , X. Pan, , T. Zhang, , and J. Guo, 2012: Changes in the near-surface soil freeze-thaw cycle on the Qinghai-Tibetan Plateau. Int. J. Appl. Earth Obs., 17, 3342.

    • Search Google Scholar
    • Export Citation
  • Liu, J., , Z. Sun, , H. Liang, , X. Xu, , and P. Wu, 2005: Precipitable water vapor on the Tibetan Plateau estimated by GPS, water vapor radiometer, radiosonde, and numerical weather prediction analysis and its impact on the radiation budget. J. Geophys. Res., 110, D17106, doi:10.1029/2004JD005715.

    • Search Google Scholar
    • Export Citation
  • Lu, H., , T. Koike, , K. Yang, , Z. Hu, , X. Xu, , M. Rasmy, , D. Kuria, , and K. Tamagawa, 2012: Improving land surface soil moisture and energy flux simulations over the Tibetan plateau by the assimilation of the microwave remote sensing data and the GCM output into a land surface model. Int. J. Appl. Earth Obs. Geoinf., 17, 4354.

    • Search Google Scholar
    • Export Citation
  • Ma, Y., , S. Kang, , L. Zhu, , B. Xu, , L. Tian, , and T. Yao, 2008: Tibetan Observation and Research Platform (TORP): Atmosphere–land interaction over a heterogeneous landscape. Bull. Amer. Meteor. Soc., 89, 14871492.

    • Search Google Scholar
    • Export Citation
  • Njoku, E., , and S. Chan, 2006: Vegetation and surface roughness effects on AMSR-E land observations. Remote Sens. Environ., 100, 190199.

    • Search Google Scholar
    • Export Citation
  • Oelke, C., , and T. Zhang, 2007: Modeling the active-layer depth over the Tibetan Plateau. Arct. Antarct. Alp. Res., 39, 714722.

  • Owe, M., , R. de Jeu, , and T. Holmes, 2008: Multisensor historical climatology of satellite-derived global land surface moisture. J. Geophys. Res., 113, F01002, doi:10.1029/2007JF000769.

    • Search Google Scholar
    • Export Citation
  • Qin, J., , K. Yang, , N. Lu, , Y. Chen, , L. Zhao, , and M. Han, 2013: Spatial upscaling of in-situ soil moisture measurements based on MODIS-derived apparent thermal inertia. Remote Sens. Environ., 138, 19.

    • Search Google Scholar
    • Export Citation
  • Qiu, J., 2008: The third pole. Nature, 454, 393396.

  • Rasmy, M., , T. Koike, , S. Boussetta, , H. Lu, , and X. Li, 2011: Development of a satellite land data assimilation system coupled with a mesoscale model in the Tibetan Plateau. Trans. Geosci. Remote Sens., 49, 28472862.

    • Search Google Scholar
    • Export Citation
  • Robock, A., , K. Y. Vinnikov, , G. Srinivasan, , J. K. Entin, , S. E. Hollinger, , N. A. Speranskaya, , S. Liu, , and A. Namkhai, 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc., 81, 12811299.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394.

  • Su, Z., , J. Wen, , L. Dente, , R. van der Velde, , L. Wang, , Y. Ma, , K. Yang, , and Z. Hu, 2011: The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products. Hydrol. Earth Syst. Sci., 15, 23032316.

    • Search Google Scholar
    • Export Citation
  • Vachaud, G., , A. Passerat De Silans, , P. Balabanis, , and M. Vauclin, 1985: Temporal stability of spatially measured soil water probability density function. Soil Sci. Soc. Amer. J., 49, 822828.

    • Search Google Scholar
    • Export Citation
  • van der Velde, R., , Z. Su, , P. van Oevelen, , J. Wen, , Y. Ma, , and M. S. Salama, 2012: Soil moisture mapping over the central part of the Tibetan Plateau using a series of ASAR WS images. Remote Sens. Environ., 120, 175187.

    • Search Google Scholar
    • Export Citation
  • Wen, J., , Z. Su, , and Y. Ma, 2003: Determination of land surface temperature and soil moisture from Tropical Rainfall Measuring Mission/Microwave Imager remote sensing data. J. Geophys. Res., 108, 4038, doi:10.1029/2002JD002176.

    • Search Google Scholar
    • Export Citation
  • Xu, X., and Coauthors, 2008: A New Integrated Observational System over the Tibetan Plateau. Bull. Amer. Meteor. Soc., 82, 14921496.

  • Yang, K., , T. Koike, , B. S. Ye, , and L. Bastidas, 2005: Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition. J. Geophys. Res., 110, D08101, doi:10.1029/2004JD005500.

    • Search Google Scholar
    • Export Citation
  • Yang, K., , T. Watanabe, , T. Koike, , X. Li, , H. Fujii, , K. Tamagawa, , Y. Ma, , and H. Ishikawa, 2007: Auto-calibration system developed to assimilate AMSR-E data into a land surface model for estimating soil moisture and the surface energy budget. J. Meteor. Soc. Japan, 85A, 229242.

    • Search Google Scholar
    • Export Citation
  • Yang, K., , B. Ye, , D. Zhou, , B. Wu, , T. Foken, , J. Qin, , and Z. Zhou, 2011: Response of hydrological cycle to recent climate changes in the Tibetan Plateau. Climatic Change, 109, 517534.

    • Search Google Scholar
    • Export Citation
  • Yang, M., , T. Yao, , X. Gou, , N. Hirose, , H. Fujii, , L. Hao, , and D. F. Levia, 2007: Diurnal freeze/thaw cycles of the ground surface on the Tibetan Plateau. Chin. Sci. Bull., 52, 136139.

    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2012: Third Pole Environment (TPE). Environ. Dev., 3, 5264.

  • Zhang, R., , T. Koike, , X. Xu, , Y. Ma, , and K. Yang, 2012: A China-Japan cooperative JICA atmospheric observing network over the Tibetan Plateau (JICA/Tibet Project): An overview. J. Meteor. Soc. Japan, 90C, 116.

    • Search Google Scholar
    • Export Citation
  • Zhang, T., , and R. L. Armstrong, 2001: Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing. Geophys. Res. Lett., 28, 763766.

    • Search Google Scholar
    • Export Citation
  • Zhao, L., and Coauthors, 2013: Spatiotemporal analysis of soil moisture observations within a Tibetan mesoscale area and its implication to regional soil moisture measurements. J. Hydrol., 482, 92104, doi:10.1016/j.jhydrol.2012.12.033.

    • Search Google Scholar
    • Export Citation
  • Zhao, T. J., , L. X. Zhang, , L. M. Jiang, , S. J. Zhao, , L. N. Chai, , and R. Jin, 2011: A new soil freeze/thaw discriminant algorithm using AMSR-E passive microwave imagery. Hydrol. Processes, 25, 17041716.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 167 167 33
PDF Downloads 117 117 20

A Multiscale Soil Moisture and Freeze–Thaw Monitoring Network on the Third Pole

View More View Less
  • 1 Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
  • 2 Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
  • 3 Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
  • 4 Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
  • 5 College of Global Change and Earth System Science, Beijing Normal University, Beijing, China
  • 6 State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
  • 7 Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China
© Get Permissions
Restricted access

Multisphere interactions over the Tibetan Plateau directly impact its surrounding climate and environment at a variety of spatiotemporal scales. Remote sensing and modeling are expected to provide hydrometeorological data needed for these process studies, but in situ observations are required to support their calibration and validation. For this purpose, we have established a dense monitoring network on the central Tibetan Plateau to measure two state variables (soil moisture and temperature) at three spatial scales (1.0°, 0.3°, and 0.1°) and four soil depths (0–5, 10, 20, and 40 cm). The experimental area is characterized by low biomass, high soil moisture dynamic range, and typical freeze–thaw cycle. The network consists of 56 stations with their elevation varying over 4470–4950 m. As auxiliary parameters of this network, soil texture and soil organic carbon content are measured at each station to support further studies. To guarantee continuous and high-quality data, tremendous efforts have been made to protect the data-logger from soil water intrusion, to calibrate soil moisture sensors, and to upscale the point measurements.

As the highest soil moisture network above sea level in the world, our network meets the requirement for evaluating a variety of soil moisture products and for soil moisture scaling analyses. It also directly contributes to the soil–water–ice–air–ecosystem interaction studies on the third pole. The data will be publicized via the International Soil Moisture Network and the recent 2-yr data will become accessible soon.

CORRESPONDING AUTHOR: Kun Yang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Bldg. 3, Courtyard 16, Lincui Rd., Chaoyang District, Beijing 100101, China, E-mail: yangk@itpcas.ac.cn

A supplement to this article is available online (10.1175/BAMS-D-12-00203.2)

Multisphere interactions over the Tibetan Plateau directly impact its surrounding climate and environment at a variety of spatiotemporal scales. Remote sensing and modeling are expected to provide hydrometeorological data needed for these process studies, but in situ observations are required to support their calibration and validation. For this purpose, we have established a dense monitoring network on the central Tibetan Plateau to measure two state variables (soil moisture and temperature) at three spatial scales (1.0°, 0.3°, and 0.1°) and four soil depths (0–5, 10, 20, and 40 cm). The experimental area is characterized by low biomass, high soil moisture dynamic range, and typical freeze–thaw cycle. The network consists of 56 stations with their elevation varying over 4470–4950 m. As auxiliary parameters of this network, soil texture and soil organic carbon content are measured at each station to support further studies. To guarantee continuous and high-quality data, tremendous efforts have been made to protect the data-logger from soil water intrusion, to calibrate soil moisture sensors, and to upscale the point measurements.

As the highest soil moisture network above sea level in the world, our network meets the requirement for evaluating a variety of soil moisture products and for soil moisture scaling analyses. It also directly contributes to the soil–water–ice–air–ecosystem interaction studies on the third pole. The data will be publicized via the International Soil Moisture Network and the recent 2-yr data will become accessible soon.

CORRESPONDING AUTHOR: Kun Yang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Bldg. 3, Courtyard 16, Lincui Rd., Chaoyang District, Beijing 100101, China, E-mail: yangk@itpcas.ac.cn

A supplement to this article is available online (10.1175/BAMS-D-12-00203.2)

Save