Tropical Cyclone Morphology from Spaceborne Synthetic Aperture Radar

Xiaofeng Li GST, NOAA/NESDIS, College Park, Maryland

Search for other papers by Xiaofeng Li in
Current site
Google Scholar
PubMed
Close
,
Jun A. Zhang Hurricane Research Division, AOML, NOAA, Miami, Florida

Search for other papers by Jun A. Zhang in
Current site
Google Scholar
PubMed
Close
,
Xiaofeng Yang Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing, China

Search for other papers by Xiaofeng Yang in
Current site
Google Scholar
PubMed
Close
,
William G. Pichel STAR, NOAA/NESDIS, College Park, Maryland

Search for other papers by William G. Pichel in
Current site
Google Scholar
PubMed
Close
,
Mark DeMaria STAR, NOAA/NESDIS, College Park, Maryland

Search for other papers by Mark DeMaria in
Current site
Google Scholar
PubMed
Close
,
David Long Electrical and Computer Engineering Department, Brigham Young University, Provo, Utah

Search for other papers by David Long in
Current site
Google Scholar
PubMed
Close
, and
Ziwei Li Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing, China

Search for other papers by Ziwei Li in
Current site
Google Scholar
PubMed
Close
Restricted access

In 2008, the Canadian Space Agency sponsored the Radarsat Hurricane Applications Project (RHAP), for researching new developments in the application of Radarsat-1 synthetic aperture radar (SAR) data and innovative mapping approaches to better understand the dynamics of tropical cyclone genesis, morphology, and movement. Although tropical cyclones can be detected by many remote sensors, SAR can yield high-resolution (subkilometer) and low-level storm information that cannot be seen below the clouds by other sensors. In addition to the wind field and tropical cyclone eye information, structures associated with atmospheric processes can also be detected by SAR. We have acquired 161 Radarsat-1 SAR images through RHAP between 2001 and 2007. Among these, 73 images show clear tropical cyclone eye structure. In addition, we also acquired 10 images from the European Space Agency's Envisat SAR between 2004 and 2010. Both Atlantic hurricanes and Pacific typhoons are included.

In this study, we analyze these 83 (73 Radarsat-1 and 10 Envisat) images with tropical cyclone eye information along with ancillary tropical cyclone intensity information from the archive to generate tropical cyclone morphology statistics. Histograms of wave-number asymmetry and intensity are presented. The statistics show that when the storm has higher intensity, the tropical cyclone eye tends to become more symmetric, and the area of the tropical cyclone eye, defined by the minimum wind area, tends to be smaller. Examples of finescale structures within the tropical cyclone (i.e., eye/eyewall mesovortices, arc clouds, double eyewalls, and abnormally high wind or rain within eyes) are presented and discussed.

CORRESPONDING AUTHOR: Xiaofeng Yang, No. 20A Datun Rd., Chaoyang District, Beijing 100101, China, E-mail: yangxf@irsa.ac.cn

In 2008, the Canadian Space Agency sponsored the Radarsat Hurricane Applications Project (RHAP), for researching new developments in the application of Radarsat-1 synthetic aperture radar (SAR) data and innovative mapping approaches to better understand the dynamics of tropical cyclone genesis, morphology, and movement. Although tropical cyclones can be detected by many remote sensors, SAR can yield high-resolution (subkilometer) and low-level storm information that cannot be seen below the clouds by other sensors. In addition to the wind field and tropical cyclone eye information, structures associated with atmospheric processes can also be detected by SAR. We have acquired 161 Radarsat-1 SAR images through RHAP between 2001 and 2007. Among these, 73 images show clear tropical cyclone eye structure. In addition, we also acquired 10 images from the European Space Agency's Envisat SAR between 2004 and 2010. Both Atlantic hurricanes and Pacific typhoons are included.

In this study, we analyze these 83 (73 Radarsat-1 and 10 Envisat) images with tropical cyclone eye information along with ancillary tropical cyclone intensity information from the archive to generate tropical cyclone morphology statistics. Histograms of wave-number asymmetry and intensity are presented. The statistics show that when the storm has higher intensity, the tropical cyclone eye tends to become more symmetric, and the area of the tropical cyclone eye, defined by the minimum wind area, tends to be smaller. Examples of finescale structures within the tropical cyclone (i.e., eye/eyewall mesovortices, arc clouds, double eyewalls, and abnormally high wind or rain within eyes) are presented and discussed.

CORRESPONDING AUTHOR: Xiaofeng Yang, No. 20A Datun Rd., Chaoyang District, Beijing 100101, China, E-mail: yangxf@irsa.ac.cn
Save
  • Aberson, S., M. T. Montgomery, M. M. Bell, and M. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part II. Extreme localized wind. Bull. Amer. Meteor. Soc., 87, 1335–1347.

    • Search Google Scholar
    • Export Citation
  • Alpers, W., and B. Brümmer, 1994: Atmospheric boundary layer rolls observed by the synthetic aperture radar aboard the ERS-1 satellite. J. Geophys. Res., 99(C6), 12 613–12 621.

    • Search Google Scholar
    • Export Citation
  • Bliven, L. F., and J. Giovanangeli, 1993: An experimental study of microwave scattering from rain- and wind-roughened seas. Int. J. Remote Sens., 14, 855–869.

    • Search Google Scholar
    • Export Citation
  • Braun, S. A., M. T. Montgomery, and Z. Pu, 2006: High-resolution simulation of Hurricane Bonnie (1998). Part I: The organization of eyewall vertical motion. J. Atmos. Sci., 63, 19–42.

    • Search Google Scholar
    • Export Citation
  • Du, Y., and P. W. Vachon, 2003: Characterization of hurricane eyes in RADARSAT-1 images with wavelet analysis. Can. J. Remote Sens., 29, 491–498.

    • Search Google Scholar
    • Export Citation
  • Dunion, J., M. D. Eastin, D. S. Nolan, J. Hawkins, and C. Velden, 2010: Arc clouds in the tropical cyclone environment: Implications for TC intensity change. Preprints, 29th Conf. on Hurricanes and Tropical Meteorology, Tucson, AZ, Amer. Meteor. Soc., 6C.7. [Available online at https://ams.confex.com/ams/29Hurricanes/techprogram/paper_168620.htm.]

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. I: Steady-state maintenance. J. Atmos. Sci., 43, 585–604.

    • Search Google Scholar
    • Export Citation
  • Foster, R. C., 2005: Why rolls are prevalent in the hurricane boundary layer. J. Atmos. Sci., 62, 2647–2661.

  • Friedman, K. S., and X. Li, 2000: Monitoring hurricanes over the ocean with wide swath SAR. Johns Hopkins APL Technical Digest, Vol. 21, No. 1, Applied Physics Laboratory, Laurel, MD, 80–85. [Available online at www.jhuapl.edu/techdigest/TD/td2101/fried.pdf.]

    • Search Google Scholar
    • Export Citation
  • Fu, L.-L., and B. Holt, 1982: Seasat views oceans and sea ice with synthetic aperture radar. JPL Publ. 81–120, 200 pp.

  • Horstmann, J., D. Thompson, F. Monaldo, S. Iris, and H. C. Graber, 2005: Can synthetic aperture radars be used to estimate hurricane force winds? Geophys. Res. Lett., 32, L22801, doi:10.1029/2005GL023992.

    • Search Google Scholar
    • Export Citation
  • Katsaros, K., P. W. Vachon, P. G. Black, P. P. Dodge, and E. W. Uhlhorn, 2000: Wind fields from SAR: Could they improve our understanding of storm dynamics? Johns Hopkins APL Technical Digest, Vol. 21, No. 1, Applied Physics Laboratory, Laurel, MD, 86–93. [Available online at www.jhuapl.edu/techdigest/TD/td2101/katsaros.pdf.]

    • Search Google Scholar
    • Export Citation
  • Kimball, S. K., and M. S. Mulekar, 2004: A 15-year climatology of North Atlantic tropical cyclones. Part I: Size parameters. J. Climate, 17, 3555–3575.

    • Search Google Scholar
    • Export Citation
  • Knaff, J. A., and J. F. Weaver, 2000: A mesoscale low-level thunderstorm outflow boundary associated with Hurricane Luis. Mon. Wea. Rev., 128, 3352–3355.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and M. C. Kruk, 2010: Quantifying interagency differences in tropical cyclone best-track wind speed estimates. Mon. Wea. Rev., 138, 1459–1473.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and M. D. Eastin, 2001: Two distinct regimes in the kinematic and thermodynamic structure of the hurricane eye and eyewall. J. Atmos. Sci., 58, 1079–1090.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 2196–2209.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., and W. H. Schubert, 2004: Mesovortices in Hurricane Isabel (2003). Bull. Amer. Meteor. Soc., 85, 151–153.

  • Kossin, J. P., B. D. McNoldy, and W. H. Schubert, 2002: Vortical swirls in hurricane eye clouds. Mon. Wea. Rev., 130, 3144–3149.

  • Li, X., W. Pichel, M. He, S. Wu, K. Friedman, P. Clemente-Colon, and C. Zhao, 2002: Observation of hurricane-generated ocean swell refraction at the Gulf Stream north wall with the RADARSAT-1 synthetic aperture radar. IEEE Trans. Geosci. Remote Sens., 40, 2131–2142, doi:10.1109/TGRS.2002.802474.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., W. Alpers, V. Khoo, H. Lim, T. K. Lim, and D. Kasilingam, 2001: An ERS-1 synthetic aperture radar image of a tropical squall line compared with weather radar data. IEEE Trans. Geosci. Remote Sens., 39, 937–945.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., Jr., and R. A. Houze Jr., 1984: Airborne Doppler radar observations in Hurricane Debby. Bull. Amer. Meteor. Soc., 65, 569–582.

    • Search Google Scholar
    • Export Citation
  • Montgomery, M. T., M. M. Bell, S. Aberson, and M. Black, 2006: Hurricane Isabel (2003): New insights into the physics of intense storms. Part I: Mean vortex structure and maximum intensity estimate. Bull. Amer. Meteor. Soc., 87, 1335–1347.

    • Search Google Scholar
    • Export Citation
  • Morrison, I., S. Businger, F. Marks, P. Dodge, and J. A. Businger, 2005: An observational case for the prevalence of roll vortices in the hurricane boundary layer. J. Atmos. Sci., 62, 2662–2673.

    • Search Google Scholar
    • Export Citation
  • Nie, C., and D. G. Long, 2007: RADARSAT ScanSAR wind retrieval under hurricane conditions. Earth Observations Systems XII, J. Butler and J. Xiong, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6677), 66770K, doi:10.1117/12.732600.

    • Search Google Scholar
    • Export Citation
  • Nie, C., and D. G. Long, 2008: RADARSAT ScanSAR wind retrieval and rain effects on ScanSAR measurements under hurricane conditions. Proc. IGARSS 2008 Geoscience and Remote Sensing Symp., Boston, MA, IEEE International, 493–496.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., and M. T. Montgomery, 2000: The algebraic growth of wavenumber-1 disturbances in hurricane-like vortices. J. Atmos. Sci., 57, 3514–3538.

    • Search Google Scholar
    • Export Citation
  • Nolan, D. S., J. A. Zhang, and D. P. Stern, 2009: Evaluation of planetary boundary layer parameterizations in tropical cyclones by comparison of in-situ data and high-resolution simulations of Hurricane Isabel (2003). Part I: Initialization, maximum winds, and outer core boundary layer structure. Mon. Wea. Rev., 137, 3651–3674.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. T. Montgomery, F. D. Marks Jr., and J. F. Gamache, 2000: Low-wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128, 1653–1680.

    • Search Google Scholar
    • Export Citation
  • Reasor, P. D., M. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603–631.

    • Search Google Scholar
    • Export Citation
  • Reppucci, A., S. Lehner, J. Schulz-Stellenfleth, and S. Brusch, 2010: Tropical cyclone intensity estimated from wide-swath SAR images. IEEE Trans. Geosci. Remote Sens., 48, 1639–1649, doi:10.1109/TGRS.2009.2037143.

    • Search Google Scholar
    • Export Citation
  • Rozoff, C. M., J. P. Kossin, W. H. Schubert, and P. J. Mulero, 2009: Internal control of hurricane intensity variability: The dual nature of potential vorticity mixing. J. Atmos. Sci., 66, 133–147.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in hurricanes. J. Atmos. Sci., 56, 1197–1223.

    • Search Google Scholar
    • Export Citation
  • Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378–394.

    • Search Google Scholar
    • Export Citation
  • Shen, H., W. Perrie, and Y. He, 2006: A new hurricane wind retrieval algorithm for SAR images. Geophys. Res. Lett., 33, L21812, doi:10.1029/2006GL027087.

    • Search Google Scholar
    • Export Citation
  • Shen, W., 2006: Does the size of hurricane eye matter with its intensity? Geophys. Res. Lett., 33, L18813, doi:10.1029/2006GL027313.

  • Smith, R. K., 1980: Tropical cyclone eye dynamics. J. Atmos. Sci., 37, 1227–1232.

  • Vachon, P. W., and J. Wolfe, 2011: C-band cross-polarization wind speed retrieval. IEEE Trans. Geosci. Remote Sens. Lett., 8, 456–459.

    • Search Google Scholar
    • Export Citation
  • Valenzuela, R. G., 1978: Theories for the interaction of electromagnetic and ocean waves—A review. Bound.-Layer Meteor., 13, 61–85, doi:10.1007/BF00913863.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., 1990: Temporal changes of the primary circulation in tropical cyclones. J. Atmos. Sci., 47, 242–264.

  • Wurman, J., and J. Winslow, 1998: Intense sub-kilometer boundary layer rolls in Hurricane Fran. Science, 280, 555–557.

  • Yang, B., Y. Wang, and B. Wang, 2007: The effect of internally generated inner-core asymmetries on tropical cyclone potential intensity. J. Atmos. Sci., 64, 1165–1188.

    • Search Google Scholar
    • Export Citation
  • Yang, X., X. Li, W. G. Pichel, and Z. Li, 2011: Comparison of ocean surface winds from ENVISAT ASAR, MetOp ASCAT scatterometer, buoy measurements, and NOGAPS model. IEEE Trans. Geosci. Remote Sens., 49, 4743–4750, doi:10.1109/TGRS.2011.2159802.

    • Search Google Scholar
    • Export Citation
  • Zhang, B., and W. Perrie, 2012: Cross-polarized synthetic aperture radar: A potential measurement technique for hurricanes. Bull. Amer. Meteor. Soc., 93, 531–541.

    • Search Google Scholar
    • Export Citation
  • Zhang, B., W. Perrie, P. W. Vachon, X. Li, and W. G. Pichel, 2012: Ocean vector winds retrieval from C-band fully polarimetric SAR measurements. IEEE Trans. Geosci. Remote Sens., 50, 4252–4261, doi:10.1109/TGRS.2012.2194157.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., K. B. Katsaros, P. G. Black, S. Lehner, J. R. French, and W. M. Drennan, 2008: Effects of roll vortices on turbulent fluxes in the hurricane boundary layer. Bound.-Layer Meteor., 128, 173–189.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3927 2559 651
PDF Downloads 1001 182 34