High and Dry: New Observations of Tropospheric and Cloud Properties above the Greenland Ice Sheet

Matthew D. Shupe Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Matthew D. Shupe in
Current site
Google Scholar
PubMed
Close
,
David D. Turner NOAA/National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by David D. Turner in
Current site
Google Scholar
PubMed
Close
,
Von P. Walden University of Idaho, Moscow, Idaho

Search for other papers by Von P. Walden in
Current site
Google Scholar
PubMed
Close
,
Ralf Bennartz University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Ralf Bennartz in
Current site
Google Scholar
PubMed
Close
,
Maria P. Cadeddu Argonne National Laboratory, Argonne, Illinois

Search for other papers by Maria P. Cadeddu in
Current site
Google Scholar
PubMed
Close
,
Benjamin B. Castellani Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Benjamin B. Castellani in
Current site
Google Scholar
PubMed
Close
,
Christopher J. Cox University of Idaho, Moscow, Idaho

Search for other papers by Christopher J. Cox in
Current site
Google Scholar
PubMed
Close
,
David R. Hudak Environment Canada, King City, Ontario, Canada

Search for other papers by David R. Hudak in
Current site
Google Scholar
PubMed
Close
,
Mark S. Kulie University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Mark S. Kulie in
Current site
Google Scholar
PubMed
Close
,
Nathaniel B. Miller University of Wisconsin—Madison, Madison, Wisconsin

Search for other papers by Nathaniel B. Miller in
Current site
Google Scholar
PubMed
Close
,
Ryan R. Neely III Cooperative Institute for Research in Environmental Sciences, University of Colorado, and NOAA Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Ryan R. Neely III in
Current site
Google Scholar
PubMed
Close
,
William D. Neff NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by William D. Neff in
Current site
Google Scholar
PubMed
Close
, and
Penny M. Rowe University of Idaho, Moscow, Idaho

Search for other papers by Penny M. Rowe in
Current site
Google Scholar
PubMed
Close
Restricted access

Cloud and atmospheric properties strongly influence the mass and energy budgets of the Greenland Ice Sheet (GIS). To address critical gaps in the understanding of these systems, a new suite of cloud- and atmosphere-observing instruments has been installed on the central GIS as part of the Integrated Characterization of Energy, Clouds, Atmospheric State, and Precipitation at Summit (ICECAPS) project. During the first 20 months in operation, this complementary suite of active and passive ground-based sensors and radiosondes has provided new and unique perspectives on important cloud–atmosphere properties.

High atop the GIS, the atmosphere is extremely dry and cold with strong near-surface static stability predominating throughout the year, particularly in winter. This low-level thermodynamic structure, coupled with frequent moisture inversions, conveys the importance of advection for local cloud and precipitation formation. Cloud liquid water is observed in all months of the year, even the particularly cold and dry winter, while annual cycle observations indicate that the largest atmospheric moisture amounts, cloud water contents, and snowfall occur in summer and under southwesterly flow. Many of the basic structural properties of clouds observed at Summit, Greenland, particularly for low-level stratiform clouds, are similar to their counterparts in other Arctic regions.

The ICECAPS observations and accompanying analyses will be used to improve the understanding of key cloud–atmosphere processes and the manner in which they interact with the GIS. Furthermore, they will facilitate model evaluation and development in this data-sparse but environmentally unique region.

CORRESPONDING AUTHOR: Dr. Matthew D. Shupe, R/PSD3, 325 Broadway, Boulder, CO 80305, E-mail: matthew.shupe@noaa.gov

Cloud and atmospheric properties strongly influence the mass and energy budgets of the Greenland Ice Sheet (GIS). To address critical gaps in the understanding of these systems, a new suite of cloud- and atmosphere-observing instruments has been installed on the central GIS as part of the Integrated Characterization of Energy, Clouds, Atmospheric State, and Precipitation at Summit (ICECAPS) project. During the first 20 months in operation, this complementary suite of active and passive ground-based sensors and radiosondes has provided new and unique perspectives on important cloud–atmosphere properties.

High atop the GIS, the atmosphere is extremely dry and cold with strong near-surface static stability predominating throughout the year, particularly in winter. This low-level thermodynamic structure, coupled with frequent moisture inversions, conveys the importance of advection for local cloud and precipitation formation. Cloud liquid water is observed in all months of the year, even the particularly cold and dry winter, while annual cycle observations indicate that the largest atmospheric moisture amounts, cloud water contents, and snowfall occur in summer and under southwesterly flow. Many of the basic structural properties of clouds observed at Summit, Greenland, particularly for low-level stratiform clouds, are similar to their counterparts in other Arctic regions.

The ICECAPS observations and accompanying analyses will be used to improve the understanding of key cloud–atmosphere processes and the manner in which they interact with the GIS. Furthermore, they will facilitate model evaluation and development in this data-sparse but environmentally unique region.

CORRESPONDING AUTHOR: Dr. Matthew D. Shupe, R/PSD3, 325 Broadway, Boulder, CO 80305, E-mail: matthew.shupe@noaa.gov
Save
  • Alley, R. B., and Coauthors, 1993: Abrupt increase in Greenland snow accumulation at the end of the Younger Dryas event. Nature, 362, 527529.

    • Search Google Scholar
    • Export Citation
  • Alley, R. B., P. Mayewski, D. Peel, and B. Stauffer, 1996: Twin ice cores from Greenland reveal history of climate change, more. Eos, Trans. Amer. Geophys. Union, 77, 209210.

    • Search Google Scholar
    • Export Citation
  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other field studies. J. Atmos. Sci., 66, 28882899.

    • Search Google Scholar
    • Export Citation
  • Campbell, J. R., D. L. Hlavka, E. J. Welton, C. J. Flynn, D. D. Turner, J. D. Spinhirne, V. S. Scott, and I. H. Hwang, 2002: Full-time, eye-safe cloud and aerosol lidar observation at Atmospheric Radiation Measurement Program sites: Instruments and data processing. J. Atmos. Oceanic Technol., 19, 431442.

    • Search Google Scholar
    • Export Citation
  • Cawkwell, F. G. L., and J. L. Bamber, 2002: The impact of cloud cover on the net radiation budget of the Greenland Ice Sheet. Ann. Glaciol., 34, 141149.

    • Search Google Scholar
    • Export Citation
  • Church, J. A., and Coauthors, 2001: Changes in sea level. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 639693.

    • Search Google Scholar
    • Export Citation
  • Crewell, S., and U. Löhnert, 2003: Accuracy of cloud liquid water path from ground-based microwave radiometry 2. Sensor accuracy and synergy. Radio Sci., 38, 8042, doi:10.1029/2002RS002634.

    • Search Google Scholar
    • Export Citation
  • Crewell, S., and U. Löhnert, 2007: Accuracy of boundary layer temperature profiles retrieved with multifrequency multiangle microwave radiometry. IEEE Trans. Geosci. Remote Sens., 45, 21952201.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., W. B. Rossow, D. Randall, and J. L. Schramm, 1996: Overview of Arctic cloud and radiation characteristics. J. Climate, 9, 17311764.

    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., and A. C. A. P. van Lammeren, 2001: Cloud effective particle size and water content profile retrievals using combined lidar and radar observations: 1. Theory and examples. J. Geophys. Res., 106(D21), 27 42527 448.

    • Search Google Scholar
    • Export Citation
  • Doyle, J. D., and M. A. Shapiro, 1999: Flow response to large-scale topography: The Greenland tip jet. Tellus, 51A, 728748.

  • Fichefet, T., C. Poncin, H. Goosse, P. Huybrechts, I. Janssens, and H. Le Treut, 2003: Implications of changes in freshwater flux from the Greenland Ice Sheet for the climate of the 21st century. Geophys. Res. Lett., 30, 1911, doi:10.1029/2003GL017826.

    • Search Google Scholar
    • Export Citation
  • FitzGerald, D. M., M. S. Fenster, B. A. Argow, and I. V. Buynevich, 2008: Coastal impacts due to sea-level rise. Annu. Rev. Earth Planet. Sci., 36, 601647.

    • Search Google Scholar
    • Export Citation
  • Flynn, C. J., A. Mendoza, Y. Zheng, and S. Mathur, 2007: Novel polarization-sensitive micropulse lidar measurement technique. Opt. Express, 15, 27852790.

    • Search Google Scholar
    • Export Citation
  • Forrer, J., M., and W. Rotach, 1997: On the turbulence structure in the stable boundary layer over the Greenland Ice Sheet. Bound.-Layer Meteor., 85, 111136.

    • Search Google Scholar
    • Export Citation
  • Fox, N. I., and A. J. Illingworth, 1997: The retrieval of stratocumulus cloud properties by ground-based cloud radar. J. Appl. Meteor., 36, 485492.

    • Search Google Scholar
    • Export Citation
  • Frey, R. A., S. A. Ackerman, Y. Liu, K. I. Strabala, H. Zhang, J. R. Key, and X. Wang, 2008: Cloud detection with MODIS. Part I: Improvements in the MODIS cloud mask for Collection 5. J. Atmos. Oceanic Technol., 25, 10571072.

    • Search Google Scholar
    • Export Citation
  • Griggs, J. A., and J. L. Bamber, 2008: Assessment of cloud cover characteristics in satellite datasets and reanalysis products for Greenland. J. Climate, 21, 18371849.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., J. McConnell, S. Das, J. Cappelen, and A. Stephens, 2006: Observed and modeled Greenland Ice Sheet snow accumulation, 1958–2003, and links with regional climate forcing. J. Climate, 19, 344358.

    • Search Google Scholar
    • Export Citation
  • Hanna, E., and Coauthors, 2008: Increased runoff from melt from the Greenland Ice Sheet: A response to global warming. J. Climate, 21, 331341.

    • Search Google Scholar
    • Export Citation
  • Hayman, M., and J. P. Thayer, 2012: General description of polarization in lidar using Stokes vectors and polar decomposition of Mueller matrices. J. Opt. Soc. Amer., 29, 400409.

    • Search Google Scholar
    • Export Citation
  • Helmig, D., J. Boulter, D. David, J. S. Birks, N. J. Cullen, K. Steffen, B. J. Johnson, and S. J. Oltmans, 2002: Ozone and meteorological boundary-layer conditions at Summit, Greenland, during 3–21 June 2000. Atmos. Environ., 36, 25952608.

    • Search Google Scholar
    • Export Citation
  • Highwood, E. J., B. J. Hoskins, and P. Berrisford, 2000: Properties of the Arctic tropopause. Quart. J. Roy. Meteor. Soc., 126, 15151532.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., M. D. Shupe, T. Uttal, and B. J. McCarty, 2002: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res., 107, 8030, doi:10.1029/2000JC000423.

    • Search Google Scholar
    • Export Citation
  • Jungclaus, J. H., H. Haak, M. Esch, E. Roeckner, and J. Marotzke, 2006: Will Greenland melting halt the thermohaline circulation? Geophys. Res. Lett., 33, L17708, doi:10.1029/2006GL026815.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004: Atmospheric Emitted Radiance Interferometer. Part I: Instrument design. J. Atmos. Oceanic Technol., 21, 17631776.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., B. A. Albrecht, R. Lhermitte, and A. Savtchenko, 2001: Radar observations of updrafts, downdrafts, and turbulence in fair-weather cumuli. J. Atmos. Sci., 58, 17501766.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., S. Crewell, O. Krasnov, E. O'Connor, and H. Russchenberg, 2008: Advances in continuously profiling the thermodynamic state of the boundary layer: Integration of measurements and methods. J. Atmos. Oceanic Technol., 25, 12511266.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., D. D. Turner, and S. Crewell, 2009: Ground-based temperature and humidity profiling using spectral infrared and microwave observations. Part I: Simulated retrieval performance in clear-sky conditions. J. Appl. Meteor. Climatol., 48, 10171032.

    • Search Google Scholar
    • Export Citation
  • Luke, E., P. Kollias, and M. D. Shupe, 2010: Detection of supercooled liquid in mixed-phase clouds using radar Doppler spectra. J. Geophys. Res., 115, D19201, doi:10.1029/2009JD012884.

    • Search Google Scholar
    • Export Citation
  • Magono, C., and C. W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ., 2, 321335.

  • Mahesh, A., V. Walden, and S. G. Warren, 2001a: Ground-based infrared remote sensing of cloud properties over the Antarctic Plateau. Part I: Cloudbase heights. J. Appl. Meteor., 40, 12651278.

    • Search Google Scholar
    • Export Citation
  • Mahesh, A., V. Walden, and S. G. Warren, 2001b: Ground-based infrared remote sensing of cloud properties over the Antarctic Plateau. Part II: Cloud optical depths and particle sizes. J. Appl. Meteor., 40, 12791294.

    • Search Google Scholar
    • Export Citation
  • Marchand, R., G. G. Mace, T. Ackerman, and G. Stephens, 2008: Hydrometeor detection using Cloudsat—An Earth-orbiting 94-GHz cloud radar. J. Atmos. Oceanic Technol., 25, 519533.

    • Search Google Scholar
    • Export Citation
  • Mason, B. J., 1952: The spontaneous crystallization of supercooled water. Quart. J. Roy. Meteor. Soc., 78, 2227.

  • McPhee, M. G., A. Proshutinsky, J. M. Morison, M. Steele, and M. B. Alkire, 2009: Rapid change in freshwater content of the Arctic Ocean. Geophys. Res. Lett., 36, L10602, doi:10.1029/2009GL037525.

    • Search Google Scholar
    • Export Citation
  • Moran, K., B. Martner, M. Post, R. Kropfli, D. Welsh, and K. Widener, 1998: An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79, 443455.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. de Boer, G. Feingold, J. Harrington, M. D. Shupe, and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117.

    • Search Google Scholar
    • Export Citation
  • Neff, W. D., D. Helmig, A. Grachev, and D. Davis, 2008: A study of boundary layer behavior associated with high NO concentrations at the South Pole using a minisodar, tethered balloon, and sonic anemometer. Atmos. Environ., 42, 27622779.

    • Search Google Scholar
    • Export Citation
  • Nicholls, R. J., and A. Cazenave, 2010: Sea-level rise and its impact on coastal zones. Science, 328, 15171520.

  • O'Connor, E. J., R. J. Hogan, and A. J. Illingworth, 2005: Retrieving stratocumulus drizzle parameters using Doppler radar and lidar. J. Appl. Meteor., 44, 1427.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., 1998: Autumnal mixed-phase cloudy boundary layers in the Arctic. J. Atmos. Sci., 55, 20162038.

  • Putnins, P., 1970: The climate of Greenland. World Survey of Climatology, Vol. 14, E. Landsberg, Ed., Elsevier, 3128.

  • Rathke, C., J. Fischer, S. Neshyba, and M. D. Shupe, 2002: Improving IR cloud phase determination with 20 microns spectral observations. Geophys. Res. Lett., 29, 1209, doi:10.1029/2001GL014594.

    • Search Google Scholar
    • Export Citation
  • Ridley, J. K., P. Huybrechts, J. M. Gregory, and J. A. Lowe, 2005: Elimination of the Greenland Ice Sheet in a high CO2 climate. J. Climate, 18, 34093427.

    • Search Google Scholar
    • Export Citation
  • Rignot, E., and P. Kanagaratnam, 2006: Changes in the velocity structure of the Greenland Ice Sheet. Science, 311, 986990.

  • Rose, T., S. Crewell, U. Löhnert, and C. Simmer, 2005: A network suitable microwave radiometer for operational monitoring of the cloudy atmosphere. Atmos. Res., 75, 183200.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1974: Depolarization of laser light backscattered by artificial ice clouds. J. Appl. Meteor., 13, 923933.

  • Sassen, K., and B. S. Cho, 1992: Subvisual-thin cirrus lidar dataset for satellite verification and climatological research. J. Appl. Meteor., 31, 12751285.

    • Search Google Scholar
    • Export Citation
  • Schuenemann, K. C., J. J. Cassano, and J. Finnis, 2009: Synoptic forcing of precipitation over Greenland: Climatology for 1961–99. J. Hydrometeor., 10, 6078.

    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1988: Sunny Greenland. Quart. J. Roy. Meteor. Soc., 114, 329.

  • Sedlar, J., M. D. Shupe, and M. Tjernström, 2012: On the relationship between thermodynamic structure and cloud top, and its climate significance in the Arctic. J. Climate, 25, 23742393.

    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., and P. I. Joe, 2008: Performance of the Precipitation Occurrence Sensor System as a precipitation gauge. J. Atmos. Oceanic Technol., 25, 196212.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., 2007: A ground-based multisensor cloud phase classifier. Geophys. Res. Lett., 34, L22809, doi:10.1029/2007GL031008.

  • Shupe, M. D., T. Uttal, and S. Y. Matrosov, 2005: Arctic cloud microphysics retrievals from surface-based remote sensors at SHEBA. J. Appl. Meteor., 44, 15441562.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., S. Y. Matrosov, and T. Uttal, 2006: Arctic mixedphase cloud properties derived from surface-based sensors at SHEBA. J. Atmos. Sci., 63, 697711.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., P. Kollias, M. Poellot, and E. Eloranta, 2008: On deriving vertical air motions from cloud radar Doppler spectra. J. Atmos. Oceanic Technol., 25, 547557.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., V. P. Walden, E. Eloranta, T. Uttal, J. R. Campbell, S. M. Starkweather, and M. Shiobara, 2011: Clouds at Arctic atmospheric observatories, Part I. Occurrence and macrophysical properties. J. Appl. Meteor. Climatol., 50, 626644.

    • Search Google Scholar
    • Export Citation
  • Solomon, A., M. D. Shupe, P. O. G. Persson, and H. Morrison, 2011: Moisture and dynamical interactions maintaining Arctic decoupled mixed-phase stratocumulus in the presence of a humidity inversion. Atmos. Chem. Phys., 11, 10 12710 148.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., R. G. Ellingson, J. A. Curry, J. E. Walsh, and B. D. Zak, 1999: Review of science issues, deployment strategy, and status for the ARM North Slope of Alaska–Adjacent Arctic Ocean climate research site. J. Climate, 12, 4663.

    • Search Google Scholar
    • Export Citation
  • Starkweather, S. M., 2004: Characteristics of cloud cover and its radiative impacts over the high elevations of the Greenland Ice Sheet. Ph.D. dissertation, University of Colorado, 202 pp.

    • Search Google Scholar
    • Export Citation
  • Steffen, K., and J. Box, 2001: Surface climatology of the Greenland Ice Sheet: Greenland Climate Network 1995–1999. J. Geophys. Res., 106(D24), 33 93133 964.

    • Search Google Scholar
    • Export Citation
  • Stroeve, J., M. M. Holland, W. Meier, T. Scambos, and M. Serreze, 2007: Arctic sea ice decline: Faster than forecast. Geophys. Res. Lett., 34, L09501, doi:10.1029/2007GL029703.

    • Search Google Scholar
    • Export Citation
  • Tedesco, M., 2006: Greenland Ice Sheet snowmelt from spaceborne microwave brightness temperatures. Eos, Trans. Amer. Geophys. Union, 88, 238, doi:10.1029/2007EO220003.

    • Search Google Scholar
    • Export Citation
  • Tjernström, M., and Coauthors, 2012: Meteorological conditions in the central Arctic summer during the Arctic Summer Cloud Ocean Study (ASCOS). Atmos. Chem. Phys., 12, 68636889, doi:10.5194/acp-12-6863-2012.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2005: Arctic mixed-phase cloud properties from AERI lidar observations: Algorithm and results from SHEBA. J. Appl. Meteor., 44, 427444.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2007: Improved ground-based liquid water path retrievals using a combined infrared and microwave approach. J. Geophys. Res., 112, D15204, doi:10.1029/2007JD008530.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and E. W. Eloranta, 2008: Validating mixed-phase cloud optical depth retrieved from infrared observations with high spectral resolution lidar. IEEE Geosci. Remote Sens. Lett., 5, 285288, doi:10.1109/LGRS.2008.915940.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., W. F. Feltz, and R. A. Ferrare, 2000: Continuous water vapor profiles from operational ground-based active and passive remote sensors. Bull. Amer. Meteor. Soc., 81, 13011317.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Ackerman, B. A. Baum, H. E. Revercomb, and P. Yang, 2003: Cloud phase determination using ground-based AERI observations at SHEBA. J. Appl. Meteor., 42, 701715.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. Cady-Pereira, and K. L. Gaustad, 2007a: Retrieving liquid water path and precipitable water vapor from Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45, 36803690.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2007b: Thin liquid water clouds: Their importance and our challenge. Bull. Amer. Meteor. Soc., 88, 177190.

    • Search Google Scholar
    • Export Citation
  • Uttal, T., and Coauthors, 2002: Surface Heat Budget of the Arctic Ocean. Bull. Amer. Meteor. Soc., 83, 255276.

  • Vaughan, M. A., and Coauthors, 2009: Fully automated detection of cloud and aerosol layers in the CALIPSO lidar measurements. J. Atmos. Oceanic Technol., 26, 20342050.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and J. R. Key, 2005: Arctic surface, cloud, and radiation properties based on the AVHRR Polar Pathfinder dataset. Part I: Spatial and temporal characteristics. J. Climate, 18, 25582574.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., A. Sorteberg, J. Zhang, R. Gerdes, and J. Comiso, 2008: Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys. Res. Lett., 35, L22701, doi:10.1029/2008GL035607.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3421 2238 929
PDF Downloads 1020 235 16