Precipitation from Space: Advancing Earth System Science

Paul A. Kucera National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Paul A. Kucera in
Current site
Google Scholar
PubMed
Close
,
Elizabeth E. Ebert Centre for Australian Weather and Climate Research, Bureau of Meteorology, Melbourne, Victoria, Australia

Search for other papers by Elizabeth E. Ebert in
Current site
Google Scholar
PubMed
Close
,
F. Joseph Turk Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by F. Joseph Turk in
Current site
Google Scholar
PubMed
Close
,
Vincenzo Levizzani Institute of Atmospheric Sciences and Climate, National Research Council, Bologna, Italy

Search for other papers by Vincenzo Levizzani in
Current site
Google Scholar
PubMed
Close
,
Dalia Kirschbaum NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Dalia Kirschbaum in
Current site
Google Scholar
PubMed
Close
,
Francisco J. Tapiador Faculty of Environmental Sciences and Biochemistry, University of Castilla-La Mancha, Toledo, Spain

Search for other papers by Francisco J. Tapiador in
Current site
Google Scholar
PubMed
Close
,
Alexander Loew Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Alexander Loew in
Current site
Google Scholar
PubMed
Close
, and
M. Borsche Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by M. Borsche in
Current site
Google Scholar
PubMed
Close
Restricted access

Advances to space-based observing systems and data processing techniques have made precipitation datasets quickly and easily available via various data portals and widely used in Earth sciences. The increasingly lengthy time span of space-based precipitation data records has enabled cross-discipline investigations and applications that would otherwise not be possible, revealing discoveries related to hydrological and land processes, climate, atmospheric composition, and ocean freshwater budget and proving a vital element in addressing societal issues. The purpose of this article is to demonstrate how the availability and continuity of precipitation data records from recent and upcoming space missions is transforming the ways that scientific and societal issues are addressed, in ways that would not be otherwise possible.

CORRESPONDING AUTHOR: Paul A. Kucera, Research Applications Laboratory, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80307-3000 E-mail: pkucera@ucar.edu

Advances to space-based observing systems and data processing techniques have made precipitation datasets quickly and easily available via various data portals and widely used in Earth sciences. The increasingly lengthy time span of space-based precipitation data records has enabled cross-discipline investigations and applications that would otherwise not be possible, revealing discoveries related to hydrological and land processes, climate, atmospheric composition, and ocean freshwater budget and proving a vital element in addressing societal issues. The purpose of this article is to demonstrate how the availability and continuity of precipitation data records from recent and upcoming space missions is transforming the ways that scientific and societal issues are addressed, in ways that would not be otherwise possible.

CORRESPONDING AUTHOR: Paul A. Kucera, Research Applications Laboratory, National Center for Atmospheric Research, 3450 Mitchell Lane, Boulder, CO 80307-3000 E-mail: pkucera@ucar.edu
Save
  • Adler, R. F., and Coauthors, 2003. The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeor., 4, 1147–1167.

    • Search Google Scholar
    • Export Citation
  • Arkin, P. A., and B. N. Meisner, 1987: The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982–84. Mon. Wea. Rev., 115, 51–74.

    • Search Google Scholar
    • Export Citation
  • Aubinet, M., and Coauthors, 1999: Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res., 30, 113–175.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., 2008: Breathing of the terrestrial biosphere: Lessons learned from a global network of carbon dioxide flux measurement systems. Aust. J. Bot., 56, 1–26.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., G. Ohring, C. Kummerow, and T. Auligne, 2011: Assimilating satellite observations of clouds and precipitation into NWP models. Bull. Amer. Meteor. Soc., 92, ES25–ES28.

    • Search Google Scholar
    • Export Citation
  • Crow, W. T., G. J. Huffman, R. Bindlish, and T. J. Jackson, 2009: Improving satellite-based rainfall accumulation estimates using spaceborne surface soil moisture retrievals. J. Hydrometeor., 10, 199–212.

    • Search Google Scholar
    • Export Citation
  • Dinku, T., F. Ruiz, S. J. Connor, and P. Ceccato, 2010: Validation and intercomparison of satellite rainfall estimates over Colombia. J. Appl. Meteor. Climatol., 49, 1004–1014.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P., 2006: The hydrologic feedback pathway for land–climate coupling. J. Hydrol., 7, 857–867.

  • Ebert, E., S. Kusselson, and M. Turk, 2005: Validation of NESDIS operational Tropical Rainfall Potential (TRaP) forecasts for Australian tropical cyclones. Aust. Meteor. Mag., 54, 121–135.

    • Search Google Scholar
    • Export Citation
  • Ebert, E., J. E. Janowiak, and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 47–64.

    • Search Google Scholar
    • Export Citation
  • Ebert, E., M. Turk, S. J. Kusselson, J. Yang, M. Seybold, P. R. Keehn, and R. J. Kuligowski, 2011: Ensemble Tropical Rainfall Potential (eTRaP) forecasts. Wea. Forecasting, 26, 213–224.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active and Passive (SMAP) mission. Proc. IEEE, 98, 704–716, doi:10.1109/JPROC.2010.2043918.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R., and Coauthors, 2005: The Tropical Rainfall Potential (TRaP) technique. Part II: Validation. Wea. Forecasting, 20, 465–475.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R., and Coauthors, 2013: An evaluation of microwave land surface emissivities over the continental United States to benefit GPM-era precipitation algorithms. IEEE Trans. Geosci. Remote Sens., 51, 378–398, doi:10.1109/TGRS.2012.2199121

    • Search Google Scholar
    • Export Citation
  • Goldberg, M., and Coauthors, 2011: The Global Space-based Inter-Calibration System. Bull. Amer. Meteor. Soc., 92, 467–475.

  • Hawkins, J. D., T. F. Lee, J. Turk, C. Sampson, J. Kent, and K. Richardson, 2001: Real-time internet distribution of satellite products for tropical cyclone reconnaissance. Bull. Amer. Meteor. Soc., 82, 567–578.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., R. Adler, and G. Huffman, 2006: Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment. Geophys. Res. Lett., 33, doi:10.1029/2006GL028010.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., R. Adler, F. Hossain, S. Curtis, and G. J. Huffman, 2007a: A first approach to global runoff simulation using satellite rainfall estimation. Water Resour. Res., 43, W08502, doi:10.1029/2006WR005739.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., R. Adler, and G. Huffman, 2007b: Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat. Hazards, 43, 245–256, doi:10.1007/s11069-006-9104-z.

    • Search Google Scholar
    • Export Citation
  • Hong, Y., R. Adler, and G. Huffman, 2010: Applications of TRMM-based multi-satellite precipitation estimation for global runoff prediction: Prototyping a global flood monitoring system. Satellite Rainfall Applications for Surface Hydrology, F. Hossain and M. Gebremichael, Eds., Springer Verlag, 245–266.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., S. Q. Zhang, A. M. da Silva, W. S. Olson, C. D. Kummerow, and J. Simpson, 2001: Improving global analysis and short-range forecast using rainfall and moisture observations derived from TRMM and SSM/I passive microwave sensors. Bull. Amer. Meteor. Soc., 82, 659–680.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., G. S. Jackson, C. Kummerow, and C. M. Shepherd, 2008: Global precipitation measurement. Precipitation: Advances in Measurement, Estimation, and Prediction, S. Michaelides, Ed., Springer, 131–164.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 38–55.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • Jiménez, C., and Coauthors, 2011: Global intercomparison of 12 land surface heat flux estimates. J. Geophys. Res., 116, D02102, doi:10.1029/2010JD014545.

    • Search Google Scholar
    • Export Citation
  • Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487–503.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., and V. Levizzani, 2011: Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci., 15, 1109–1116.

  • Kidd, C., P. Bauer, J. Turk, G. J. Huffman, R. Joyce, K.-L. Hsu, and D. Braithwaite, 2012: Intercomparison of high-resolution precipitation products over northwest Europe. J. Hydrometeor., 13, 67–82.

    • Search Google Scholar
    • Export Citation
  • Kidder, S. Q., S. J. Kusselson, J. A. Knaff, R. R. Ferraro, R. J. Kuligowski, and M. Turk, 2005: The Tropical Rainfall Potential (TRaP) technique. Part I: Description and examples. Wea. Forecasting, 20, 456–464.

    • Search Google Scholar
    • Export Citation
  • Kirschbaum, D. B., R. Adler, Y. Hong, and A. Lerner-Lam, 2009: Evaluation of a preliminary satellite-based landslide hazard algorithm using global landslide inventories. Nat. Hazards Earth Syst. Sci., 9, 673–686.

    • Search Google Scholar
    • Export Citation
  • Kirschbaum, D. B., R. Adler, Y. Hong, S. Kumar, C. Peters-Lidard, and A. Lerner-Lam, 2011: Advances in landslide nowcasting: Evaluation of a global and regional modeling approach. Environ. Earth Sci., 66, 1683–1696, doi:10.1007/s12665-011-0990-3.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., and Coauthors, 2011: Globally gridded satellite observations for climate studies. Bull. Amer. Meteor. Soc., 92, 893–907.

    • Search Google Scholar
    • Export Citation
  • Lettenmaier, D. P., A. de Roo, and R. Lawford, 2006: Towards a capability for global flood forecasting. WMO Bull., 55, 185–190.

  • Li, L., and Coauthors, 2010: WindSat global soil moisture retrieval and validation. IEEE Trans. Geosci. Remote Sens., 48, 2224–2241.

    • Search Google Scholar
    • Export Citation
  • Lyon, B., and D. G. DeWitt, 2012: A recent and abrupt decline in the East African long rains. Geophys. Res. Lett., 39, L02702, doi:10.1029/2011GL050337.

    • Search Google Scholar
    • Export Citation
  • Michaelides, S., V. Levizzani, E. N. Anagnostou, P. Bauer, T. Kasparis, and J. E. Lane, 2009: Precipitation: Measurement, remote sensing, climatology and modeling. Atmos. Res., 94, 512–533.

    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., T. R. H. Holmes, R. A. M. De Jeu, J. H. Gash, A. G. C. A. Meesters, and A. J. Dolman, 2011: Global land-surface evaporation estimated from satellite-based observations. Hydrol. Earth Syst. Sci., 15, 453–469.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and Coauthors 2011: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations. Geophys. Res. Lett., 38, L06402, doi:10.1029/2010GL046230.

    • Search Google Scholar
    • Export Citation
  • Pan, M., H. Li, and E. F. Wood, 2010: Assessing the skill of satellite-based precipitation estimates in hydrologic applications. Water Resour. Res., 46, W09535, doi:10.1029/2009WR008290.

    • Search Google Scholar
    • Export Citation
  • Reichle, R. H., R. D. Koster, G. J. M. DeLannoy, B. A. Forman, Q. Liu, P. P. Mahanama, and A. Toure, 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Climate, 24, 6322–6338.

    • Search Google Scholar
    • Export Citation
  • Simpson, J., R. F. Adler, and G. North, 1988: A proposed Tropical Rainfall Measuring Mission (TRMM) satellite. Bull. Amer. Meteor. Soc., 69, 278–295.

    • Search Google Scholar
    • Export Citation
  • Sun, Y., S. Solomon, A. Dai, and R. W. Portmann, 2006: How often does it rain? J. Climate, 19, 916–934.

  • Tapiador, F. J., 2010: A joint estimate of the precipitation climate signal in Europe using eight regional models and five observational datasets. J. Climate, 23, 1719–1738.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and E. Sánchez, 2008: Changes in the European precipitation climatologies (2070–2100) as derived by eight regional climate models. J. Climate, 21, 2540–2557.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., E. Sánchez, and R. Romera, 2009: Exploiting an ensemble of regional climate models to provide robust estimates of projected changes in monthly temperature and precipitation probabilistic distribution functions. Tellus, 61A, 57–71, doi:10.1111/j.1600-0870.2008.00374.x.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and Coauthors, 2012: Global precipitation measurement: Methods, datasets and applications. Atmos. Res., 104–105, 70–97.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth's global energy budget. Bull. Amer. Meteor. Soc., 90, 311–323.

  • Turk, F. J., and S. D. Miller, 2005: Toward improved characterization of remotely sensed precipitation regimes with MODIS/AMSR-E blended data techniques. IEEE Trans. Geosci. Remote Sens., 43, 1059–1069.

    • Search Google Scholar
    • Export Citation
  • Turk, F. J., and P. Xian, 2012: An assessment of satellite-based high resolution precipitation datasets for atmospheric composition studies in the Maritime Continent. Atmos. Res., in press, doi:10.1016/j.atmosres.2012.02.017.

    • Search Google Scholar
    • Export Citation
  • Wang, J., and Coauthors, 2011: The Coupled Routing and Excess Storage (CREST) distributed hydrological model. Hydrol. Sci. J., 56, 84–98.

    • Search Google Scholar
    • Export Citation
  • Wu, H., R. Adler, Y. Tian, Y. Hong, and F. Policelli, 2012: Evaluation of global flood detection using satellite-based rainfall and a hydrological model. J. Hydrometeor., 13, 1268–1284.

    • Search Google Scholar
    • Export Citation
  • Xian, P., J. S. Reid, J. F. Turk, E. J. Hyer, and D. L. Westphal, 2009: Impact of modeled versus satellite measured tropical precipitation on wet removal in an aerosol transport model. Geophys. Res. Lett., 36, L16805, doi:10.1029/2009GL038823.

    • Search Google Scholar
    • Export Citation
  • Yilmaz, K. K., R. F. Adler, Y. Tian, Y. Hong, and H. F. Pierce, 2010: Evaluation of a satellite-based global flood monitoring system. Int. J. Remote Sens., 31, 3763–3782, doi:10.1080/01431161.2010.483489.

    • Search Google Scholar
    • Export Citation
  • Zhang, J., J. S. Reid, D. L. Westphal, N. L. Baker, and E. J. Hyer, 2008: A system for operat ional aerosol optical depth data assimilation over global oceans. J. Geophys. Res., 113, D10208, doi:10.1029/2007JD009065.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1171 211 7
PDF Downloads 647 101 3