The Arm Climate Research Facility: A Review of Structure and Capabilities

James H. Mather Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by James H. Mather in
Current site
Google Scholar
PubMed
Close
and
Jimmy W. Voyles Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Jimmy W. Voyles in
Current site
Google Scholar
PubMed
Close
Restricted access

The Atmospheric Radiation Measurement (ARM) Climate Research Facility (www.arm.gov) provides atmospheric observations from diverse climatic regimes around the world. Because it is a U.S. Department of Energy (DOE) user facility, ARM data are freely available to anyone through the ARM Data Archive. With 20 years of operations, the facility recently added two mobile facilities and an aerial facility to its network of fixed-location sites. Research using ARM data has led to advances in areas ranging from radiative transfer to cloud microphysics. The American Recovery and Reinvestment Act of 2009 allowed ARM to enhance its observational capabilities with a broad array of new instruments at its fixed and mobile sites and the aerial facility. Instruments include scanning radars; water vapor, cloud/aerosol extinction, and Doppler lidars; aerosol instruments for measuring optical, physical, and chemical properties; and aircraft probes for measuring cloud and aerosol properties. Taking full advantage of these instruments will involve the development of complex data products. This work is underway but will benefit from engagement with the broader scientific community. This article describes the current status of the ARM research capabilities with an emphasis on developments over the past eight years since ARM was designated a DOE scientific user facility, reviews some of scientific advances made using the ARM Facility over the past two decades, and describes the new measurement capabilities and adaptations of the ARM facility to make effective use of these capabilities.

CORRESPONDING AUTHOR: James H. Mather, Pacific Northwest National Laboratory, P.O. Box 999, MS K9-38, Richland, WA 99352, E-mail: jim.mather@pnl.gov

The Atmospheric Radiation Measurement (ARM) Climate Research Facility (www.arm.gov) provides atmospheric observations from diverse climatic regimes around the world. Because it is a U.S. Department of Energy (DOE) user facility, ARM data are freely available to anyone through the ARM Data Archive. With 20 years of operations, the facility recently added two mobile facilities and an aerial facility to its network of fixed-location sites. Research using ARM data has led to advances in areas ranging from radiative transfer to cloud microphysics. The American Recovery and Reinvestment Act of 2009 allowed ARM to enhance its observational capabilities with a broad array of new instruments at its fixed and mobile sites and the aerial facility. Instruments include scanning radars; water vapor, cloud/aerosol extinction, and Doppler lidars; aerosol instruments for measuring optical, physical, and chemical properties; and aircraft probes for measuring cloud and aerosol properties. Taking full advantage of these instruments will involve the development of complex data products. This work is underway but will benefit from engagement with the broader scientific community. This article describes the current status of the ARM research capabilities with an emphasis on developments over the past eight years since ARM was designated a DOE scientific user facility, reviews some of scientific advances made using the ARM Facility over the past two decades, and describes the new measurement capabilities and adaptations of the ARM facility to make effective use of these capabilities.

CORRESPONDING AUTHOR: James H. Mather, Pacific Northwest National Laboratory, P.O. Box 999, MS K9-38, Richland, WA 99352, E-mail: jim.mather@pnl.gov
Save
  • Ackerman, T. P., and G. M. Stokes, 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56, 3844, doi:10.1063/1.1554135.

    • Search Google Scholar
    • Export Citation
  • Ackerman, T. P., R. G. Ellingson, R. A. Ferrare, S. A. Klein, G. M. McFarquhar, P. J. Lamb, C. N. Long, and J. Verlinde, 2004: Atmospheric Radiation Measurement Program Science Plan. DOE/ER-ARM-0402, 62 pp. [Available online at www.arm.gov/publications/programdocs/doe-er-arm-0402.pdf.]

    • Search Google Scholar
    • Export Citation
  • Andrews, E., P. J. Sheridan, and J. A. Ogren, 2011: Seasonal differences in the vertical profiles of aerosol optical properties over rural Oklahoma. Atmos. Chem. Phys., 11, 10 66110 676, doi:10.5194/acp-11-10661-2011.

    • Search Google Scholar
    • Export Citation
  • Bergstrom, R. W., P. Pilewskie, P. B. Russell, J. Redemann, T. C. Bond, P. K. Quinn, and B. Sierau, 2007: Spectral absorption properties of atmospheric aerosols. Atmos. Chem. Phys., 7, 59375943.

    • Search Google Scholar
    • Export Citation
  • Bharadwaj, N., P. Kollias, K. Widener, and S. Collis, 2012: First generation operational modes for ARM radars. Proc. Third Atmospheric System Research Science Team Meeting, Arlington, VA, US DOE. [Available online at http://asr.science.energy.gov/meetings/stm/posters/view?id=626.]

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 664 pp.

    • Search Google Scholar
    • Export Citation
  • Brown, S. A., M. Folk, G. Goucher, and R. Rew, 1993: Software for portable scientific data management. Comput. Phys., 7, 304308.

  • Campbell, J. R., D. L. Hlavka, E. J. Welton, C. J. Flynn, D. D. Turner, J. D. Spinhirne, V. S. Scott, and I. H. Hwang, 2002: Full-time, eye-safe cloud and aerosol lidar observations at Atmospheric Radiation Measurement program sites: Instruments and data processing. J. Atmos. Oceanic Technol., 19, 431442.

    • Search Google Scholar
    • Export Citation
  • Canagartna, M. R., and Coauthors, 2007: Chemical and microphysical characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrom. Rev., 26, 185222.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. Miller, and B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39, 645665.

    • Search Google Scholar
    • Export Citation
  • Clough, S. A., M. W. Shephard, E. J. Mlawer, J. S. Delamere, M. J. Iacono, K. Cady-Pereira, S. Boukabera, and P. D. Brown, 2005: Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Trans., 91, 233244, doi:10.1016/jqsrt.2004.05.058.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., and K. Sassen, 2001: Retrieval of cirrus cloud radiative and backscattering properties using combined lidar and infrared radiometer (LIRAD) measurements. J. Atmos. Oceanic Technol., 18, 16581673.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., T. P. Ackerman, and G. G. Mace, 2002: Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts. J. Geophys. Res., 107, 4714, doi:10.1029/2002JD002203.

    • Search Google Scholar
    • Export Citation
  • de Boer, G., E. W. Eloranta, and M. D. Shupe, 2009: Arctic mixed-phase stratiform cloud properties from multiple years of surface-based measurements at two high-latitude locations. J. Atmos. Sci., 66, 28742887.

    • Search Google Scholar
    • Export Citation
  • Deng, M., and G. G. Mace, 2008: Cirrus cloud microphysical properties and air motion statistics using radar Doppler moments: Water content, particle size, and sedimentation relationships. Geophys. Res. Lett., 37, L17808, doi:10.1029/2008GL035054.

    • Search Google Scholar
    • Export Citation
  • Dong, X., and G. G. Mace, 2003: Profiles of low-level stratus cloud microphysics deduced from ground-based measurements. J. Atmos. Oceanic Technol., 20, 4253.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnic, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Eloranta, E. W., and I. A. Razenkov, 2006: Frequency locking to the center of a 532-nm iodine absorption line by using stimulated Brillouin scattering from a single-mode fiber. Opt. Lett., 31, 598600.

    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., W. L. Smith, H. Howell, R. Knuteson, H. Woolf, and H. Revercomb, 2003: Near-continuous profiling of temperature, moisture, and atmospheric stability using the Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor., 42, 584595.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R., G. Feingold, S. Ghan, J. Ogren, B. Schmid, S. E. Schwartz, and P. Sheridan, 2006a: Preface to special section: Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period examining aerosol properties and radiative influences. J. Geophys. Res., 111, D05S01, doi:10.1029/2005JD006908.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R., and Coauthors, 2006b: Evaluation of daytime measurements of aerosols and water vapor made by an operational Raman lidar over the Southern Great Plains. J. Geophys. Res., 111, D05S08, doi:10.1029/2005JD005836.

    • Search Google Scholar
    • Export Citation
  • Fridlind, A. M., and Coauthors, 2011: A comparison of TWP-ICE observational data with cloud-resolving model results. J. Geophys. Res., 117, D05204, doi:10.1029/2011JD016595.

    • Search Google Scholar
    • Export Citation
  • Goldsmith, J. E., F. H. Blair, S. E. Bisson, and D. D. Turner, 1998: Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols. Appl. Opt., 37, 49794990.

    • Search Google Scholar
    • Export Citation
  • Grund, C. J., and E. W. Eloranta, 1991: University of Wisconsin high spectral resolution lidar. Opt. Eng., 30, 612, doi:10.1117/12.55766.

    • Search Google Scholar
    • Export Citation
  • Harrison, L., and J. Michalsky, 1994: Objective algorithms for the retrieval of optical depths from ground-based measurements. Appl. Opt., 33, 51265132.

    • Search Google Scholar
    • Export Citation
  • Jensen, M., and Coauthors, 2011: VAP Development: Initiation, development, evaluation and release. DOE/SC-ARM/TR-093, 7 pp. [Available online at www.arm.gov/publications/tech_reports/doe-scarm-tr-093.pdf.]

    • Search Google Scholar
    • Export Citation
  • Kassianov, E. I., C. Flynn, T. P. Ackerman, and J. C. Barnard, 2007: Aerosol single-scattering albedo and asymmetry parameter from MFRSR observations during the ARM aerosol IOP 2003. Atmos. Chem. Phys., 7, 33413351.

    • Search Google Scholar
    • Export Citation
  • Keenan, T. D., 2003: Hydrometeor classification with a C-band polarimetric radar. Aust. Meteor. Mag., 52, 2331.

  • Keenan, T. D., K. Glasson, F. Cummings, T. S. Bird, J. Keeler, and J. Lutz, 1998: The BMRC/NCAR C-band polarimetric (C-Pol) radar system. J. Atmos. Oceanic Technol., 15, 871886.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and Coauthors, 2009: Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part I: Single-layer cloud. Quart. J. Roy. Meteor. Soc., 135, 9791002, doi:10.1002/qj.416.

    • Search Google Scholar
    • Export Citation
  • Kleinman, L., and Coauthors, 2008: The time evolution of aerosol composition over the Mexico City plateau. Atmos. Chem. Phys., 8, 15591575, doi:10.5194/acp-8-1559-2008.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004a: Atmospheric Emitted Radiance Interferometer. Part I: Instrument design. J. Atmos. Oceanic Technol., 21, 17631777.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004b: Atmospheric Emitted Radiance Interferometer. Part II: Instrument performance. J. Atmos. Oceanic Technol., 21, 17771789.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., E. E. Clothiaux, M. A. Miller, E. P. Luke, K. L. Johnson, K. P. Moran, K. B. Widener, and B. A. Albrecht, 2007: The Atmospheric Radiation Measurement Program cloud profiling radars: Second-generation sampling strategies, processing, and cloud data products. J. Atmos. Oceanic, Technol., 24, 11991214.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., M. A. Miller, K. L. Johnson, M. P. Jensen, and D. T. Troyan, 2009: Cloud, thermodynamic, and precipitation observations in West Africa during 2006. J. Geophys. Res., 114, D00E08, doi:10.1029/2008JD010641.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140164.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and Coauthors, 2011: Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations. J. Geophys. Res., 116, D00T11, doi:10.1029/2011JD015889.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and Y. Shi, 2008: An automated quality assessment and control algorithm for surface radiation measurements. Open Atmos. Sci. J., 2, 2337, doi:10.2174/1874282300802010023.

    • Search Google Scholar
    • Export Citation
  • Luke, E. P., P. Kollias, and M. D. Shupe, 2010: Detection of supercooled liquid in mixed-phase clouds using radar Doppler spectra. J. Geophys. Res., 115, D19201, doi:10.1029/2009JD012884.

    • Search Google Scholar
    • Export Citation
  • Macduff, M. C., and R. C. Eagan, 2004: ACRF data collection and processing infrastructure. DOE/SCARM/TR-046, 20 pp. [Available online at www.arm.gov/publications/tech_reports/doe-sc-arm-tr-046.pdf.]

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., and S. Benson, 2008: The vertical structure of cloud occurrence and radiative forcing at the SGP ARM site as revealed by 8 years of continuous data. J. Climate, 21, 25912610.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and S. A. McFarlane, 2009: Cloud classes and radiative heating profiles at the Manus and Nauru Atmospheric Radiation Measurement (ARM) sites. J. Geophys. Res., 114, D19204, doi:10.1029/2009JD011703.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., T. P. Ackerman, W. E. Clements, F. J. Barnes, M. D. Ivey, L. D. Hatfield, and R. M. Reynolds, 1998: Bull. Amer. Meteor. Soc., 79, 627642.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 2010: Evaluating polarimetric X-band radar rainfall estimators during HMT. J. Atmos. Oceanic. Technol., 27, 122134.

  • Matrosov, S. Y., A. J. Heymsfield, and Z. Wang, 2005a: Dual-frequency radar ratio of nonspherical atmospheric hydrometeors. Geophys. Res. Lett., 32, L13816, doi:10.1029/2005GL023210.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, and I. V. Djalalova, 2005b: Inferring fall attitudes of pristine dendritic crystals from polarimetric radar data. J. Atmos. Sci., 62, 241250.

    • Search Google Scholar
    • Export Citation
  • May, P. T., J. H. Mather, G. Vaughan, C. Jakob, G. M. McFarquhar, K. N. Bower, and G. G. Mace, 2008: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89, 629645.

    • Search Google Scholar
    • Export Citation
  • McComiskey, A., G. Feingold, A. S. Frisch, D. D. Turner, M. A. Miller, J. C. Chiu, Q. Min, and J. A. Ogren, 2009: An assessment of aerosol–cloud interactions in marine stratus clouds based on surface remote sensing. J. Geophys. Res., 114, D09203, doi:10.1029/2008JD011006.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S., T. Shippert, and J. Mather, 2011: Radiatively Important Parameters Best Estimate (RIPBE): An ARM value-added product. DOE/SC-ARM/TR-097, 27 pp. [Available online at www.arm.gov/publications/tech_reports/doe-sc-armtr-097.pdf.]

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, M. Freer, D. Baumgardner, G. L. Kok, and G. G. Mace, 2007: Importance of small ice crystals to cirrus properties: Observations from the Tropical Warm Pool International Cloud Experiment (TWP-ICE). Geophys. Res. Lett., 34, L13803, doi:10.1029/2007GL029865.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., and Coauthors, 2011: Indirect and Semi-Direct Aerosol Campaign: The impact of Arctic aerosols on clouds. Bull. Amer. Meteor. Soc., 92, 183201.

    • Search Google Scholar
    • Export Citation
  • McLaughlin, D., and Coauthors, 2009: Short-wavelength technology and the potential for distributed networks of small radar systems. Bull. Amer. Meteor. Soc., 90, 17971817.

    • Search Google Scholar
    • Export Citation
  • Michalsky, J., E. Dutton, M. Rubes, D. Nelson, T. Stoffel, M. Wesley, M. Splitt, and J. DeLuisi, 1999: Optimal measurement of surface shortwave irradiance using current instrumentation. J. Atmos. Oceanic Technol., 16, 5569.

    • Search Google Scholar
    • Export Citation
  • Michalsky, J., and Coauthors, 2002: Broadband shortwave calibration results from the Atmospheric Radiation Measurement Enhanced Shortwave Experiment II. J. Geophys. Res., 107, 4287, doi:10.1029/2001JD001231.

    • Search Google Scholar
    • Export Citation
  • Michalsky, J., C. Gueymard, P. Kiedron, L. McArthur, R. Philipona, and T. Stoffel, 2007: A proposed working standard for the measurement of diffuse horizontal shortwave irradiance. J. Geophys. Res., 112, D16112, doi:10.1029/2007JD008651.

    • Search Google Scholar
    • Export Citation
  • Michalsky, J., F. Denn, C. Flynn, G. Hodges, P. Kiedron, A. Koontz, J. Schlemmer, and S. E. Schwartz, 2010: Climatology of aerosol optical depth in north-central Oklahoma: 1992–2008. J. Geophys. Res., 115, D07203, doi:10.1029/2009JD012197.

    • Search Google Scholar
    • Export Citation
  • Miller, M. A., and A. Slingo, 2007: The ARM Mobile Facility and its first international deployment: Measuring radiative flux divergence in West Africa. Bull. Amer. Meteor. Soc., 88, 12291244.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682.

    • Search Google Scholar
    • Export Citation
  • Molina, L. T., and Coauthors, 2010: An overview of the MILAGRO 2006 campaign: Mexico City emissions and their transport and transformation. Atmos. Chem. Phys., 10, 86978760, doi:10.5194/acp-10-8697-2010.

    • Search Google Scholar
    • Export Citation
  • Moran, K. P., B. E. Martner, M. J. Post, R. A. Kropfli, D. C. Welsh, and K. B. Widener, 1998: An unattended cloud-profiling radar for use in climate research. Bull. Amer. Meteor. Soc., 79, 443455.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., E. J. Mlawer, M. J. Iacono, and S. A. Clough, 2001: Impact of the radiation transfer scheme RRTM in the ECMWF forecasting system. ECMWF Newsletter, No. 91, ECMWF, Reading, United Kingdom, 29.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR, 268 pp. [Available online at www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.]

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., D. D. Turner, B. Mielke, M. B. Clayton, R. A. Ferrare, and C. Sivaraman, 2009: Simultaneous analog and photon counting detection for Raman lidar. Appl. Opt., 48, 39033914.

    • Search Google Scholar
    • Export Citation
  • Ng, S. C., and Coauthors, 2011: An Aerosol Chemical Speciation Monitor (ACSM) for routine monitoring of the composition and mass concentrations of ambient aerosol. Aerosol Sci. Technol., 45, 770784, doi:10.1080/02786826.2011.560211.

    • Search Google Scholar
    • Export Citation
  • Pearson, G., F. Davies, and C. Collier, 2009: An analysis of the performance of the UFAM pulsed Doppler lidar for observing the boundary layer. J. Atmos. Oceanic Technol., 26, 240250.

    • Search Google Scholar
    • Export Citation
  • Peppler, R. A., and Coauthors, 2008: An overview of ARM Program Climate Research Facility data quality assurance. Open Atmos. Sci. J., 2, 192216, doi:10.2174/1874282300802010192.

    • Search Google Scholar
    • Export Citation
  • Phillips, T. J., and Coauthors, 2004: Evaluating parameterizations in general circulation models: Climate simulation meets weather prediction. Bull. Amer. Meteor. Soc., 85, 19031915.

    • Search Google Scholar
    • Export Citation
  • Protat, A., and I. Zawadzki, 1999: A variational method for real-time retrieval of three-dimensional wind field from multiple-Doppler bistatic radar network data. J. Atmos. Oceanic Technol., 16, 432449.

    • Search Google Scholar
    • Export Citation
  • Protat, A., J. Delanoe, A. Plana-Fattori, P. T. May, and E. J. O'Connor, 2010: The statistical properties of tropical ice clouds generated by the West African and Australian monsoons, from ground-based radar-lidar observations. Quart. J. Roy. Meteor. Soc., 136, 345363, doi:10.1002/qj.490.

    • Search Google Scholar
    • Export Citation
  • Randall, D., and Coauthors, 2003: Confronting models with data: The GEWEX Cloud Systems Study. Bull. Amer. Meteor. Soc., 84, 455469.

  • Revercomb, H. E., and Coauthors, 2003: The ARM program's water vapor intensive observation periods: Overview, initial accomplishments, and future challenges. Bull. Amer. Meteor. Soc., 84, 217236.

    • Search Google Scholar
    • Export Citation
  • Schmid, B., and Coauthors, 2009: Validation of aerosol extinction and water vapor profiles from routine Atmospheric Radiation Measurement Program Climate Research Facility measurements. J. Geophys. Res., 114, D22207, doi:10.1029/ 2009JD012682.

    • Search Google Scholar
    • Export Citation
  • Schwarz, J. P., and Coauthors, 2006: Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere. J. Geophys. Res., 111, D16207, doi:10.1029/2006JD007076.

    • Search Google Scholar
    • Export Citation
  • Sedlacek, A. J., E. R. Lewis, L. Kleinman, J. Xu, and Q. Zhang, 2012: Determination of and evidence for non-core-shell structure of particles containing black carbon using the Single-Particle Soot Photometer (SP2). Geophys. Res. Lett., 39, L06802, doi:10.1029/2012GL050905.

    • Search Google Scholar
    • Export Citation
  • Sekelsky, S. M., W. L. Ecklund, J. M. Firda, K. S. Gage, and R. E. McIntosh, 1999: Particle size estimation in ice-phase clouds using multifrequency radar reflectivity measurements at 95, 33, and 2.8 GHz. J. Appl. Meteor., 38, 528.

    • Search Google Scholar
    • Export Citation
  • Sheridan, P. J., D. J. Delene, and J. A. Ogren, 2001: Four years of continuous surface aerosol measurements from the Department of Energy's Atmospheric Radiation Measurement Program Southern Great Plains Cloud and Radiation Testbed site. J. Geophys. Res., 106, 20 73520 747.

    • Search Google Scholar
    • Export Citation
  • Spinhirne, J. D., 1993: Micro pulse lidar. IEEE Trans. Geosci. Remote Sens., 31, 4855, doi:10.1109/36.210443.

  • Stamnes, K., R. G. Ellingson, J. A. Curry, J. E. Walsh, and B. D. Zak, 1999: Review of science issues, deployment strategy, and status for the ARM North Slope of Alaska–Adjacent Arctic Ocean climate research site. J. Climate, 12, 4663.

    • Search Google Scholar
    • Export Citation
  • Stephens, G., and Coauthors, 2000: The Department of Energy's Atmospheric Radiation Measurement (ARM) Unmanned Aerospace Vehicle (UAV) Program. Bull. Amer. Meteor. Soc., 81, 29152938.

    • Search Google Scholar
    • Export Citation
  • Stephens, M., N. Turner, and J. Sanberg, 2003: Particle identification by laser-induced incandescence in a solid-state laser cavity. Appl. Opt., 42, 37263736.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) Program: Programmatic background and design of the cloud and radiation testbed. Bull. Amer. Meteor. Soc., 75, 12011221.

    • Search Google Scholar
    • Export Citation
  • Tao, W.-K., and Coauthors, 2006: Retrieval of latent heating from TRMM measurements. Bull. Amer. Meteor. Soc., 87, 15551572.

  • Tomlinson, J., B. Schmid, J. Hubbe, J. Comstock, C. Kluzek, C. Long, and C. Flynn, 2011: The Department of Energy Atmospheric Radiation Measurement Airborne Facility. 34th Int. Symp. on Remote Sensing of Environment, Sydney, Australia, International Society for Photogrammetry and Remote Sensing. [Available online at www.isprs.org/proceedings/2011/ISRSE-34/211104015Final00702.pdf.]

    • Search Google Scholar
    • Export Citation
  • Toon, O. B., and R. C. Miake-Lye, 1998: Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS). Geophys. Res. Lett., 25, 11091112.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2005: Arctic mixed-phase cloud properties from AERI-lidar observations: Algorithm and results from SHEBA. J. Appl. Meteor., 44, 427444.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and J. E. M. Goldsmith, 2005: The Refurbishment and Upgrade of the Atmospheric Radiation Measurement Raman Lidar. Proc. 15th Atmospheric Radiation Measurement (ARM) Science Team Meeting, Daytona Beach, FL., U.S. Department of Energy, 6 pp. [Available online at www.arm.gov/publications/proceedings/conf15/extended_abs/turner_dd1.pdf.]

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and E. J. Mlawer, 2010: The Radiative Heating in Underexplored Bands Campaigns. Bull. Amer. Meteor. Soc., 91, 911923.

  • Turner, D. D., R. A. Ferrare, L. A. Heilman Brasseur, W. F. Feltz, and T. P. Tooman, 2002: Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar. J. Atmos. Oceanic Technol., 19, 3750.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., B. M. Lesht, S. A. Clough, J. C. Liljegren, H. E. Revercomb, and D. C. Tobin, 2003: Dry bias and variability in Vaisala RS80-H radiosondes: The ARM experience. J. Atmos. Oceanic Technol., 20, 117132.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2004: The QME AERI LBLRTM: A closure experiment for downwelling high spectral resolution infrared radiance. J. Atmos. Sci., 61, 26572675.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. Cady-Pereira, and K. L. Gaustad, 2007: Retrieving liquid water path and precipitable water vapor from Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45, 36803690.

    • Search Google Scholar
    • Export Citation
  • U.S. Department of Energy, 2007: Report on the ARM Climate Research Facility Expansion Workshop. DOE/SC-ARM-0707, 50 pp. [Available online at www.arm.gov/publications/programdocs/doe-scarm-0707.pdf.]

    • Search Google Scholar
    • Export Citation
  • U.S. Department of Energy, 2008: ARM Climate Research Facility Workshop Report. DOE/SC-ARM-0804, 23 pp. [Available online at www.arm.gov/publications/programdocs/doe-sc-arm-0804.pdf.]

    • Search Google Scholar
    • Export Citation
  • U.S. Department of Energy, 2010: Atmospheric System Research (ASR) Science and Program Plan. DOE/SC-ASR-10-001, 77 pp. [Available online at http://science.energy.gov/~/media/ber/pdf/Atmospheric_system_research_science_plan.pdf.]

    • Search Google Scholar
    • Export Citation
  • U.S. Department of Energy, 2012: ARM Climate Research Facility Radar Operations Plan. DOE/SC-ARM-12-006, 17 pp. [Available online at www.arm.gov/publications/programdocs/doe-sc-arm-12-006.pdf.]

    • Search Google Scholar
    • Export Citation
  • Verlinde, J., and Coauthors, 2007: The Mixed-Phase Arctic Cloud Experiment (M-PACE). Bull. Amer. Meteor. Soc., 88, 205221.

  • Vogelmann, A., and Coauthors, 2012: RACORO extended-term, aircraft observations of boundary layer clouds. Bull. Amer. Meteor. Soc., 93, 861878.

    • Search Google Scholar
    • Export Citation
  • Voyles, J. W., 2012: ARM radar operations. DOE/SCARM-12-009, 10 pp. [Available online at www.arm.gov/publications/programdocs/doe-sc-arm-12-009.pdf.]

    • Search Google Scholar
    • Export Citation
  • Wurman, J., S. Heckman, and D. Boccippio, 1993: A bistatic multiple-Doppler radar network. J. Appl. Meteor., 32, 18021814.

  • Xie, S., and Coauthors, 2010: Clouds and more: ARM climate modeling best estimate data. Bull. Amer. Meteor. Soc., 91, 1320.

  • Zaveri, R., and Coauthors, 2012: Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES). Atmos. Chem. Phys. Discuss., 12, 12991400.

    • Search Google Scholar
    • Export Citation
  • Zhang, M. H., and J. L. Lin, 1997: Constrained variational analysis of sounding data based on column-integrated budgets of mass, heat, moisture and momentum: Approach and application to ARM measurements. J. Atmos. Sci., 54, 15031524.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and S. A. Klein, 2010: Mechanisms affecting the transition from shallow to deep convection over land: Inferences from observations of the diurnal cycle collected at the ARM Southern Great Plains site. J. Atmos. Sci., 67, 29432959.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y., and Coauthors, 2008: On the diurnal cycle of deep convection, high-level cloud, and upper troposphere water vapor in the Multiscale Modeling Framework. J. Geophys. Res., 113, D16105, doi:10.1029/2008JD009905.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., S. A. Klein, S. Xie, X. Liu, J. S. Boyle, and Y. Zhang, 2012: Aerosol first indirect effects on non-precipitating low-level liquid cloud properties as simulated by CAM5 at ARM sites. Geophys. Res. Lett., 39, L08806, doi:10.1029/2012GL051213.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1965 635 71
PDF Downloads 988 289 9