High-Latitude Ocean and Sea Ice Surface Fluxes: Challenges for Climate Research

Mark A. Bourassa The Florida State University, Tallahassee, Florida

Search for other papers by Mark A. Bourassa in
Current site
Google Scholar
PubMed
Close
,
Sarah T. Gille University of California, San Diego, La Jolla, California

Search for other papers by Sarah T. Gille in
Current site
Google Scholar
PubMed
Close
,
Cecilia Bitz University of Washington, Seattle, Washington

Search for other papers by Cecilia Bitz in
Current site
Google Scholar
PubMed
Close
,
David Carlson British Antarctic Survey, Cambridge, United Kingdom

Search for other papers by David Carlson in
Current site
Google Scholar
PubMed
Close
,
Ivana Cerovecki University of California, San Diego, La Jolla, California

Search for other papers by Ivana Cerovecki in
Current site
Google Scholar
PubMed
Close
,
Carol Anne Clayson The Florida State University, Tallahassee, Florida

Search for other papers by Carol Anne Clayson in
Current site
Google Scholar
PubMed
Close
,
Meghan F. Cronin NOAA / Pacific Marine Environmental Laboratory, Seattle, Washington

Search for other papers by Meghan F. Cronin in
Current site
Google Scholar
PubMed
Close
,
Will M. Drennan University of Miami, Miami, Florida

Search for other papers by Will M. Drennan in
Current site
Google Scholar
PubMed
Close
,
Chris W. Fairall NOAA /Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Chris W. Fairall in
Current site
Google Scholar
PubMed
Close
,
Ross N. Hoffman Atmospheric and Environmental Research, Lexington, Massachusetts

Search for other papers by Ross N. Hoffman in
Current site
Google Scholar
PubMed
Close
,
Gudrun Magnusdottir University of California, Irvine, Irvine, California

Search for other papers by Gudrun Magnusdottir in
Current site
Google Scholar
PubMed
Close
,
Rachel T. Pinker University of Maryland, College Park, College Park, Maryland

Search for other papers by Rachel T. Pinker in
Current site
Google Scholar
PubMed
Close
,
Ian A. Renfrew University of East Anglia, Norwich, United Kingdom

Search for other papers by Ian A. Renfrew in
Current site
Google Scholar
PubMed
Close
,
Mark Serreze University of Colorado, Boulder, Colorado

Search for other papers by Mark Serreze in
Current site
Google Scholar
PubMed
Close
,
Kevin Speer The Florida State University, Tallahassee, Florida

Search for other papers by Kevin Speer in
Current site
Google Scholar
PubMed
Close
,
Lynne D. Talley University of California, San Diego, La Jolla, California

Search for other papers by Lynne D. Talley in
Current site
Google Scholar
PubMed
Close
, and
Gary A. Wick NOAA /Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Gary A. Wick in
Current site
Google Scholar
PubMed
Close
Restricted access

Polar regions have great sensitivity to climate forcing; however, understanding of the physical processes coupling the atmosphere and ocean in these regions is relatively poor. Improving our knowledge of high-latitude surface fluxes will require close collaboration among meteorologists, oceanographers, ice physicists, and climatologists, and between observationalists and modelers, as well as new combinations of in situ measurements and satellite remote sensing. This article describes the deficiencies in our current state of knowledge about air–sea surface fluxes in high latitudes, the sensitivity of various high-latitude processes to changes in surface fluxes, and the scientific requirements for surface fluxes at high latitudes. We inventory the reasons, both logistical and physical, why existing flux products do not meet these requirements. Capturing an annual cycle in fluxes requires that instruments function through long periods of cold polar darkness, often far from support services, in situations subject to icing and extreme wave conditions. Furthermore, frequent cloud cover at high latitudes restricts the availability of surface and atmospheric data from visible and infrared (IR) wavelength satellite sensors. Recommendations are made for improving high-latitude fluxes, including 1) acquiring more in situ observations, 2) developing improved satellite-flux-observing capabilities, 3) making observations and flux products more accessible, and 4) encouraging flux intercomparisons.

CURRENT AFILIATION: Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Corresponding author : Sarah Gille, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., Mail Code 0230, La Jolla, CA 92093-0230, E-mail: sgille@ucsd.edu

Polar regions have great sensitivity to climate forcing; however, understanding of the physical processes coupling the atmosphere and ocean in these regions is relatively poor. Improving our knowledge of high-latitude surface fluxes will require close collaboration among meteorologists, oceanographers, ice physicists, and climatologists, and between observationalists and modelers, as well as new combinations of in situ measurements and satellite remote sensing. This article describes the deficiencies in our current state of knowledge about air–sea surface fluxes in high latitudes, the sensitivity of various high-latitude processes to changes in surface fluxes, and the scientific requirements for surface fluxes at high latitudes. We inventory the reasons, both logistical and physical, why existing flux products do not meet these requirements. Capturing an annual cycle in fluxes requires that instruments function through long periods of cold polar darkness, often far from support services, in situations subject to icing and extreme wave conditions. Furthermore, frequent cloud cover at high latitudes restricts the availability of surface and atmospheric data from visible and infrared (IR) wavelength satellite sensors. Recommendations are made for improving high-latitude fluxes, including 1) acquiring more in situ observations, 2) developing improved satellite-flux-observing capabilities, 3) making observations and flux products more accessible, and 4) encouraging flux intercomparisons.

CURRENT AFILIATION: Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

Corresponding author : Sarah Gille, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., Mail Code 0230, La Jolla, CA 92093-0230, E-mail: sgille@ucsd.edu
Save
  • Alam, A., and J. A. Curry, 1997: Determination of surface turbulent fluxes over leads in Arctic sea ice. J. Geophys. Res., 102 (C2), 33313344.

    • Search Google Scholar
    • Export Citation
  • AMAP, 2011: AMAP Assessment 2011: Mercury in the Arctic. Arctic Monitoring and Assessment Programme, 193 pp. [Available online at www.amap.no/assessment/scientificbackground.htm.]

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., and E. C. Monahan, 2000: The role of whitecap bubbles in air–sea heat and moisture exchange. J. Phys. Oceanogr., 30, 433442.

    • Search Google Scholar
    • Export Citation
  • Andreas, E. L., and K. A. Emanuel, 2001: Effects of sea spray on tropical cyclone intensity. J. Atmos. Sci., 58, 37413751.

  • Andreas, E. L., P. O. G. Persson, and J. E. Hare, 2008: A bulk turbulent air–sea flux algorithm for high-wind, spray conditions. J. Phys. Oceanogr., 38, 15811596.

    • Search Google Scholar
    • Export Citation
  • Arrigo, K. R., S. Pabi, G. L. van Dijken, and W. Maslowski, 2010: Air–sea flux of CO2 in the Arctic Ocean, 1998–2003. J. Geophys. Res., 115, G04024, doi:10.1029/2009JG001224.

    • Search Google Scholar
    • Export Citation
  • Berry, D. I., and E. C. Kent, 2011: Air–sea fluxes from ICOADS: The construction of a new gridded dataset with uncertainty estimates. Int. J. Climatol., 31, 9871001, doi:10.1002/joc.2059.

    • Search Google Scholar
    • Export Citation
  • Bindoff, N., and Coauthors, 2007: Observations: Oceanic climate change and sea level. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 385432.

    • Search Google Scholar
    • Export Citation
  • Bitz, C. M., P. R. Gent, R. A. Woodgate, M. M. Holland, and R. Lindsay, 2006: The influence of sea ice on ocean heat uptake in response to increasing CO2. J. Climate, 19, 24372450.

    • Search Google Scholar
    • Export Citation
  • Blanc, T. V., 1985: Variation of bulk-derived surface flux, stability, and roughness results due to the use of different transfer coefficient schemes. J. Phys. Oceanogr., 15, 650669.

    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., 2006: Satellite-based observations of surface turbulent stress during severe weather. Atmosphere-Ocean Interactions: Volume 2, W. Perrie, Ed., Advances in Fluid Mechanics, Vol. 39, Wessex Institute of Technology Press, 3552.

    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., E. Rodriguez, and R. Gaston, 2010a: NASA's Ocean Vector Winds Science Team workshops. Bull. Amer. Meteor. Soc., 91, 925928.

    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., S. Gille, D. L. Jackson, B. J. Roberts, and G. A. Wick, 2010b: Ocean winds and turbulent air-sea fluxes inferred from remote sensing. Oceanography, 23, 3651, doi:10.5670/oceanog.2010.04.

    • Search Google Scholar
    • Export Citation
  • Bourassa, M. A., and Coauthors, 2010c: Remotely sensed winds and wind stresses for marine forecasting and ocean modeling. Proceedings of the OceanObs‘09: Sustained Ocean Observations and Information for Society Conference, J. Hall, D. E. Harrison, and D. Stammer, Eds., Vol. 2, ESA Publ. WPP-306, doi:10.5270/OceanObs09.cwp.08.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., S. Levitus, J. I. Antonov, R. A. Locarnini, and H. E. Garcia, 2005: Linear trends in salinity for the World Ocean, 1955–1998. Geophys. Res. Lett., 32, L01604, doi:10.1029/2004GL021791.

    • Search Google Scholar
    • Export Citation
  • Boyer, T. P., S. Levitus, J. I. Antonov, R. A. Locarnini, A. Mishonov, H. E. Garcia, and S. A. Josey, 2007: Changes in freshwater content in the North Atlantic Ocean 1955–2006. Geophys. Res. Lett., 34, L16603, doi:10.1029/2007GL030126.

    • Search Google Scholar
    • Export Citation
  • Bradley, F., and C. Fairall, 2006: A guide to making climate quality meteorological and flux measurements at sea. NOAA Tech. Memo. OAR PSD-311, 109 pp.

    • Search Google Scholar
    • Export Citation
  • Brandt, R. E., S. G. Warren, A. P. Worby, and T. C. Grenfell, 2005: Surface albedo of the Antarctic sea ice zone. J. Climate, 18, 36063622.

    • Search Google Scholar
    • Export Citation
  • Bromwich, D., Y.-H. Kuo, M. Serreze, J. Walsh, L.-S. Bai, M. Barlage, K. Hines, and A. Slater, 2010: Arctic system reanalysis: Call for community involvement. Eos, Trans. Amer. Geophys. Union, 91, doi:10.1029/2010EO020001.

    • Search Google Scholar
    • Export Citation
  • Bunker, A. F., 1976: Computations of surface energy flux and annual air–sea interaction cycles of the North Atlantic Ocean. Mon. Wea. Rev., 104, 11221140.

    • Search Google Scholar
    • Export Citation
  • Cerovecki, I., L. D. Talley, and M. R. Mazloff, 2011: A comparison of Southern Ocean air–sea buoyancy flux from an ocean state estimate with five other products. J. Climate, 24, 62836306.

    • Search Google Scholar
    • Export Citation
  • Cerovecki, I., L. D. Talley, M. R. Mazloff, and G. Maze, 2013: Subantarctic Mode Water formation, destruction, and export in the eddy-permitting Southern Ocean state estimate. J. Phys. Oceanogr., in press.

    • Search Google Scholar
    • Export Citation
  • Charlock, T. P., and T. L. Alberta, 1996: The CERES/ ARM/GEWEX Experiment (CAGEX) for the retrieval of radiative fluxes with satellite data. Bull. Amer. Meteor. Soc., 77, 26732683.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., R. A. de Szoeke, M. G. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability of the first baroclinic Rossby radius of deformation. J. Phys. Oceanogr., 28, 433460.

    • Search Google Scholar
    • Export Citation
  • Christensen, J. H., and Coauthors, 2007: Regional climate projections. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 847940.

    • Search Google Scholar
    • Export Citation
  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, doi:10.1029/2007GL031972.

    • Search Google Scholar
    • Export Citation
  • Condron, A., G. R. Bigg, and I. A. Renfrew, 2008: Modeling the impact of polar mesocyclones on ocean circulation. J. Geophys. Res., 113, C10005, doi:10.1029/2007JC004599.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., J. L. Schramm, A. Alam, R. Reeder, T. E. Arbetter, and P. Guest, 2002: Evaluation of data sets used to force sea ice models in the Arctic Ocean. J. Geophys. Res., 107, 8027, doi:10.1029/2000JC000466.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., and Coauthors, 2004: SeaFlux. Bull. Amer. Meteor. Soc., 85, 409424.

  • Curry, R., and C. Mauritzen, 2005: Dilution of the northern North Atlantic Ocean in recent decades. Science, 308, 17721774.

  • Dickson, B., 2006: The integrated Arctic Ocean Observing System (iAOOS): An AOSB-CliC Observing Plan for the International Polar Year. Oceanologia, 48, 521.

    • Search Google Scholar
    • Export Citation
  • Domingues, C. M., J. A. Church, N. J. White, P. J. Gleckler, S. E. Wijffels, P. M. Barker, and J. R. Dunn, 2008: Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature, 453, 10901096.

    • Search Google Scholar
    • Export Citation
  • Dong, S., S. T. Gille, J. Sprintall, and C. Gentemann, 2006: Validation of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature in the Southern Ocean. J. Geophys. Res., 111, C04002, doi:10.1029/2005JC002934.

    • Search Google Scholar
    • Export Citation
  • Dong, S., S. T. Gille, and J. Sprintall, 2007: An assessment of the Southern Ocean mixed-layer heat budget. J. Climate, 20, 44254442.

    • Search Google Scholar
    • Export Citation
  • Dong, S., S. T. Gille, J. Sprintall, and E. J. Fetzer, 2010: Assessing the potent ial of the Atmospheric Infrared Sounder (AIRS) surface temperature and specific humidity in turbulent heat flux estimates in the Southern Ocean. J. Geophys. Res., 115, C05013, doi:10.1029/2009JC005542.

    • Search Google Scholar
    • Export Citation
  • Donlon, C., and Coauthors, 2007: The Global Ocean Data Assimilation Experiment High-Resolution Sea Surface Temperature Pilot Project. Bull. Amer. Meteor. Soc., 88, 11971213.

    • Search Google Scholar
    • Export Citation
  • Durack, P. J., and S. E. Wijffels, 2010: Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. J. Climate, 23, 43424362.

    • Search Google Scholar
    • Export Citation
  • Edson, J. B., and Coauthors, 2011: Direct covariance measurement of CO2 gas transfer velocity during the 2008 Southern Ocean Gas Exchange Experiment: Wind speed dependency. J. Geophys. Res., 116, C00F10, doi:10.1029/2011JC007022.

    • Search Google Scholar
    • Export Citation
  • Engelen, R. J., and G. L. Stephens, 2004: Information content of infrared satellite sounding measurements with respect to CO2. J. Appl. Meteor., 43, 373378.

    • Search Google Scholar
    • Export Citation
  • Engelen, R. J., and A. P. McNally, 2005: Estimating atmospheric CO2 from advanced infrared satellite radiances within an operational four-dimensional variational (4D-Var) data assimilation system: Results and validation. J. Geophys. Res., 110, D18305, doi:10.1029/2005JD005982.

    • Search Google Scholar
    • Export Citation
  • Engelen, R. J., E. Andersson, F. Chevallier, A. Hollingsworth, M. Matricardi, A. P. McNally, J.-N. Thépaut, and P. D. Watts, 2004: Estimating atmospheric CO2 from advanced infrared satellite radiances within an operational 4D-Var data assimilation system: Methodology and first results. J. Geophys. Res., 109, D19309, doi:10.1029/2004JD004777.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of airsea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101 (C2), 37473767.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., J. E. Hare, J. B. Edson, and W. McGillis, 2000: Parameterization and measurement of air-sea gas transfer. Bound.-Layer Meteor., 96, 63105.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. E. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parameterizations of air–sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571591.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., M. L. Banner, W. L. Peirson, W. Asher, and R. P. Morison, 2009: Investigation of the physical scaling of sea spray spume droplet production. J. Geophys., Res., 114, C10001, doi:10.1029/2008JC004918.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., 2002: Warming of the Southern Ocean since the 1950s. Science, 295, 12751277.

  • Gille, S. T., M. A. Bourassa, and C. A. Clayson, 2010: Improving observations of high-latitude fluxes between atmosphere, ocean, and ice: Surface fluxes: Challenges at high latitudes; Boulder, Colorado, 17–19 March 2010. Eos, Trans. Amer. Geophys. Union, 91, doi:10.1029/2010EO350003.

    • Search Google Scholar
    • Export Citation
  • Gruber, A., and V. Levizzani, 2008: Assessment of global precipitation products: A project of the World Climate Research Programme Global Energy and Water Cycle Experiment (GEWEX) Radiation Panel. WCRP-128, WMO/TD-1430, 57 pp.

    • Search Google Scholar
    • Export Citation
  • Guest, P. S., 1998: Surface longwave radiation conditions in the eastern Weddell Sea during winter. J. Geophys. Res., 103(C13), 30 76130 771.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., and P. K. Taylor, Eds., 2000: Intercomparison and validation of ocean–atmosphere energy flux fields. WCRP-112, WMO/TD-1036, 303 pp.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., and K. P. Belyaev, 2012: Probability distribution characteristics for surface air–sea turbulent heat fluxes over the global ocean. J. Climate, 25, 184206.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., T. Jung, and E. Ruprecht, 2007a: Estimation of the impact of sampling errors in the VOS observations on air–sea fluxes. Part I: Uncertainties in climate means. J. Climate, 20, 279301.

    • Search Google Scholar
    • Export Citation
  • Gulev, S. K., T. Jung, and E. Ruprecht, 2007b: Estimation of the impact of sampling errors in the VOS observations on air–sea fluxes. Part II: Impact on trends and interannual variability. J. Climate, 20, 302315.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and Coauthors, 2005: Earth's energy imbalance: Confirmation and implications. Science, 308, doi:10.1126/science.1110252.

  • Ho, D. T., and Coauthors, 2011: Southern Ocean Gas Exchange Experiment: Setting the stage. J. Geophys. Res., 116, C00F08, doi:10.1029/2010JC006852.

    • Search Google Scholar
    • Export Citation
  • Holland, M. M., M. C. Serreze, and J. Stroeve, 2010: The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models. Climate Dyn., 34, 185200, doi:10.1007/s00382-008-0493-4.

    • Search Google Scholar
    • Export Citation
  • Hosoda, S., T. Suga, N. Shikama, and K. Mizuno, 2009: Global surface layer salinity change detected by Argo and its implication for hydrological cycle intensification. J. Oceanogr., 65, 579586.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J. and Coauthors, 1997: The Global Precipitation Climatology Project (GPCP) combined precipitation dataset. Bull. Amer. Meteor. Soc., 78, 520.

    • Search Google Scholar
    • Export Citation
  • Hughes, P., and M. A. Bourassa, J. Rolph, and S. R. Smith, 2012: Averaging-Related Biases in Monthly Latent Heat Fluxes. J. Atmos. Oceanic. Technol., 29, 974986, doi:10.1175/JTECH-D-11-00184.1.

    • Search Google Scholar
    • Export Citation
  • Hwang, P. A., 2005: Temporal and spatial variation of the drag coefficient of a developing sea under steady wind-forcing. J. Geophys. Res., 110, C07024, doi:10.1029/2005JC002912.

    • Search Google Scholar
    • Export Citation
  • Jackson, D. L., and G. A. Wick, 2010: Near-surface air temperature retrieval derived from AMSU-A and sea surface temperature observations. J. Atmos. Oceanic Technol., 27, 17691776.

    • Search Google Scholar
    • Export Citation
  • Jackson, D. L., G. A. Wick, and J. J. Bates, 2006: Near-surface retrieval of air temperature and specific humidity using multisensor microwave satellite observations. J. Geophys. Res., 111, D10306, doi:10.1029/2005JD006431.

    • Search Google Scholar