ARM Research In The Equatorial Western Pacific: A Decade And Counting

C. N. Long Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by C. N. Long in
Current site
Google Scholar
PubMed
Close
,
S. A. McFarlane Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by S. A. McFarlane in
Current site
Google Scholar
PubMed
Close
,
A. Del Genio NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by A. Del Genio in
Current site
Google Scholar
PubMed
Close
,
P. Minnis NASA Langley Research Center, Hampton, Virginia

Search for other papers by P. Minnis in
Current site
Google Scholar
PubMed
Close
,
T. P. Ackerman JISAO, University of Washington, Seattle, Washington

Search for other papers by T. P. Ackerman in
Current site
Google Scholar
PubMed
Close
,
J. Mather Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by J. Mather in
Current site
Google Scholar
PubMed
Close
,
J. Comstock Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by J. Comstock in
Current site
Google Scholar
PubMed
Close
,
G. G. Mace University of Utah, Salt Lake City, Utah

Search for other papers by G. G. Mace in
Current site
Google Scholar
PubMed
Close
,
M. Jensen Brookhaven National Laboratory, Upton, New York

Search for other papers by M. Jensen in
Current site
Google Scholar
PubMed
Close
, and
C. Jakob Monash University, Melbourne, Australia

Search for other papers by C. Jakob in
Current site
Google Scholar
PubMed
Close
Restricted access

The tropical western Pacific (TWP) is an important climatic region. Strong solar heating, warm sea surface temperatures, and the annual progression of the intertropical convergence zone (ITCZ) across this region generate abundant convective systems, which through their effects on the heat and water budgets have a profound impact on global climate and precipitation. In order to accurately evaluate tropical cloud systems in models, measurements of tropical clouds, the environment in which they reside, and their impact on the radiation and water budgets are needed. Because of the remote location, ground-based datasets of cloud, atmosphere, and radiation properties from the TWP region have come primarily from shortterm field experiments. While providing extremely useful information on physical processes, these short-term datasets are limited in statistical and climatological information. To provide longterm measurements of the surface radiation budget in the tropics and the atmospheric properties that affect it, the Atmospheric Radiation Measurement program established a measurement site on Manus Island, Papua New Guinea, in 1996 and on the island republic of Nauru in late 1998. These sites provide unique datasets now available for more than 10 years on Manus and Nauru. This article presents examples of the scientific use of these datasets including characterization of cloud properties, analysis of cloud radiative forcing, model studies of tropical clouds and processes, and validation of satellite algorithms. New instrumentation recently installed at the Manus site will provide expanded opportunities for tropical atmospheric science.

CORRESPONDING AUTHOR: Dr. Charles N. Long, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K4-28, Richland, WA 99352, E-mail: chuck.long@pnl.gov

The tropical western Pacific (TWP) is an important climatic region. Strong solar heating, warm sea surface temperatures, and the annual progression of the intertropical convergence zone (ITCZ) across this region generate abundant convective systems, which through their effects on the heat and water budgets have a profound impact on global climate and precipitation. In order to accurately evaluate tropical cloud systems in models, measurements of tropical clouds, the environment in which they reside, and their impact on the radiation and water budgets are needed. Because of the remote location, ground-based datasets of cloud, atmosphere, and radiation properties from the TWP region have come primarily from shortterm field experiments. While providing extremely useful information on physical processes, these short-term datasets are limited in statistical and climatological information. To provide longterm measurements of the surface radiation budget in the tropics and the atmospheric properties that affect it, the Atmospheric Radiation Measurement program established a measurement site on Manus Island, Papua New Guinea, in 1996 and on the island republic of Nauru in late 1998. These sites provide unique datasets now available for more than 10 years on Manus and Nauru. This article presents examples of the scientific use of these datasets including characterization of cloud properties, analysis of cloud radiative forcing, model studies of tropical clouds and processes, and validation of satellite algorithms. New instrumentation recently installed at the Manus site will provide expanded opportunities for tropical atmospheric science.

CORRESPONDING AUTHOR: Dr. Charles N. Long, Pacific Northwest National Laboratory, P.O. Box 999, MSIN: K4-28, Richland, WA 99352, E-mail: chuck.long@pnl.gov
Save
  • Ackerman, T. P., and G. M. Stokes, 2003: The Atmospheric Radiation Measurement Program. Phys. Today, 56, 3844, doi:10.1063/1.1554135.

    • Search Google Scholar
    • Export Citation
  • Ackerman, T. P., W. E. Clements, F. J. Barnes, and D. S. Renne, 1999: Tropical Western Pacific Cloud and Radiation Testbed: Science, siting, and implementation strategies. ARM Tech. Rep. ARM-99-004, 71 pp. [Available online at www.arm.gov/publications/site_reports/twp/arm-99-004.pdf.]

    • Search Google Scholar
    • Export Citation
  • Bedka, S., R. Knuteson, H. Revercomb, D. Tobin, and D. Turner, 2010: An assessment of the absolute accuracy of the Atmospheric Infrared Sounder v5 precipitable water vapor product at tropical, midlatitude, and arctic ground-truth sites: September 2002 through August 2008. J. Geophys. Res., 115, D17310, doi:10.1029/2009JD013139.

    • Search Google Scholar
    • Export Citation
  • Boyle, J. S., and Coauthors, 2005: Diagnosis of Community Atmospheric Model 2 (CAM2) in numerical weather forecast configuration at Atmospheric Radiation Measurement sites. J. Geophys. Res., 110, D15S15, doi:10.1029/2004JD005042.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528.

    • Search Google Scholar
    • Export Citation
  • Chen, Y., and A. D. Del Genio, 2009: Evaluation of tropical cloud regimes in observations and a general circulation model. Climate Dyn., 32, 355369.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., T. P. Ackerman, G. G. Mace, K. P. Moran, R. T. Marchand, M. A. Miller, and B. E. Martner, 2000: Objective determination of cloud heights and radar reflectivities using a combination of active remote sensors at the ARM CART sites. J. Appl. Meteor., 39, 645665.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., and C. Jakob, 2004: Evaluation of tropical cirrus cloud properties derived from ECMWF model output and ground based measurements over Nauru Island. Geophys. Res. Lett., 31, L10106, doi:10.1029/2004GL019539.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., T. P. Ackerman, and G. G. Mace, 2002: Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts. J. Geophys. Res., 107, 4714, doi:10.1029/2002JD002203.

    • Search Google Scholar
    • Export Citation
  • Del Genio, A. D., Y. Chen, D. Kim, and M.-S. Yao, 2012: The MJO transition from shallow to deep convection in CloudSat/CALIPSO data and GISS GCM simulations. J. Climate, 25, 37553770.

    • Search Google Scholar
    • Export Citation
  • Deng, M., and G. G. Mace, 2008: Cirrus cloud microphysical properties and air motion statistics using cloud radar Doppler moments: Water content, particle size, and sedimentation relationships. Geophys. Res. Lett., 35, L17808, doi:10.1029/2008GL035054.

    • Search Google Scholar
    • Export Citation
  • Dinh, T., D. R. Durran, and T. Ackerman, 2012: Cirrus and water vapor transport in the tropical tropopause layer—Part 1: A specific case modeling study. Atmos. Chem. Phys. Discuss., 12, 97999815, doi:10.5194/acp-12-9799-2012.

    • Search Google Scholar
    • Export Citation
  • DOE, 1996: Science Plan for the Atmospheric Radiation Measurement Program (ARM). DOE Tech. Rep. DOE/ER-0670T, 86 pp. [Available online at www.arm.gov/publications/programdocs/doe-er-0670t.pdf.]

    • Search Google Scholar
    • Export Citation
  • Dong, X., and Coauthors, 2008: Using observations of deep convective systems to constrain atmospheric column absorption of solar radiation in the optically thick limit. J. Geophys. Res., 113, D10206, doi:10.1029/2007JD009769.

    • Search Google Scholar
    • Export Citation
  • Fueglistaler, S., and Q. Fu, 2006: Impact of clouds on radiative heating rates in the tropical lower stratosphere. J. Geophys. Res., 111, D23202, doi:10.1029/2006JD007273.

    • Search Google Scholar
    • Export Citation
  • Grody, N., J. Zhao, R. Ferraro, F. Weng, and R. Boers, 2006: Determination of precipitable water and cloud liquid water over oceans from the NOAA-15 Advanced Microwave Sounding Unit. J. Geophys. Res., 106, 24932953.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., D. P. Kratz, P. W. Stackhouse, A. C. Wilber, T. Zhang, and V. E. Sothcott, 2010: Improvement of surface longwave flux algorithms used in CERES processing. J. Appl. Meteor. Climatol., 49, 15791589.

    • Search Google Scholar
    • Export Citation
  • Hannah, W. M., and E. D. Maloney, 2011: The role of moisture–convection feedbacks in simulating the Madden–Julian oscillation. J. Climate, 24, 27542770.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., L. A. Moy, and Q. Fu, 2001: Tropical convection and the energy balance at the top of the atmosphere. J. Climate, 14, 44954511.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 116.

    • Search Google Scholar
    • Export Citation
  • Hollars, S., Q. Fu, J. M. Comstock, and T. P. Ackerman, 2004: Comparisons of cloud-top height retrievals from ground-based 35-GHz MMCR and GMS-5 satellite observations at ARM TWP Manus site. Atmos. Res., 72, 169186.

    • Search Google Scholar
    • Export Citation
  • Holloway, C. E., and J. D. Neelin, 2009: Moisture vertical structure, column water vapor, and tropical deep convection. J. Atmos. Sci., 66, 16651683.

    • Search Google Scholar
    • Export Citation
  • Huang, J., P. Minnis, B. Lin, Y. Yi, T.-F. Fan, S. Sun-Mack, and J. K. Ayers, 2006: Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements. Geophys. Res. Lett., 33, L21801, doi:10.1029/2006GL027038.

    • Search Google Scholar
    • Export Citation
  • Hume, T., and C. Jakob, 2005: Ensemble single column modeling (ESCM) in the tropical western Pacific: Forcing data sets and uncertainty analysis. J. Geophys. Res., 110, D13109, doi:10.1029/2004JD005704.

    • Search Google Scholar
    • Export Citation
  • Hume, T., and C. Jakob, 2007: Ensemble single column model validation in the tropical western Pacific. J. Geophys. Res., 112, D10206, doi:10.1029/2006JD008018.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., R. Pincus, C. Hannay, and K.-M. Xu, 2004: The use of cloud radar observations for model evaluation: A probabilistic approach. J. Geophys. Res., 109, D03202, doi:10.1029/2003JD003473.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., G. Tselioudis, and T. Hume, 2005: The radiative, cloud and thermodynamic properties of the major tropical western Pacific cloud regimes. J. Climate, 18, 12031215.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and A. D. Del Genio, 2003: Radiative and microphysical characteristics of deep convective systems in the tropical western Pacific. J. Appl. Meteor., 42, 12341254.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and A. D. Del Genio, 2006: Factors limiting convective cloud-top height at the ARM Nauru Island Climate Research Facility. J. Climate, 19, 21052117.

    • Search Google Scholar
    • Export Citation
  • Kahn, B. H., and Coauthors, 2005: Nighttime cirrus detection using Atmospheric Infrared Sounder window channels and total column water vapor. J. Geophys. Res., 110, D07203, doi:10.1029/2004JD005430.

    • Search Google Scholar
    • Export Citation
  • Kassianov, E., T. Ackerman, R. Marchand, and M. Ovtchinnikov, 2003: Satellite multiangle cumulus geometry retrieval: Case study. J. Geophys. Res., 108, 4117, doi:10.1029/2002JD002350.

    • Search Google Scholar
    • Export Citation
  • Kim, D., and Coauthors, 2009: Application of MJO diagnostics to climate models. J. Climate, 22, 64136436.

  • Kollias, P., and B. A. Albrecht, 2010: Vertical velocity statistics in fair-weather cumuli at the ARM TWP Nauru climate research facility. J. Climate, 23, 65906604.

    • Search Google Scholar
    • Export Citation
  • Kratz, D. P., S. K. Gupta, A. C. Wilber, and V. E. Sothcott, 2010: Validation of the CERES edition 2B surface-only flux algorithms. J. Appl. Meteor. Climatol., 49, 164180.

    • Search Google Scholar
    • Export Citation
  • Kurzeja, R. J., E. Villa-Aleman, and A. J. Garrett, 2001: Comparison of MTI satellite-derived surface water temperatures and in situ measurements. Tech. Rep. WSRC-MS-2001-00576. [Available online at http://sti.srs.gov/fulltext/ms2001576/ms2001576.html.]

    • Search Google Scholar
    • Export Citation
  • Long, C. N., 1996: Surface radiative energy budget and cloud forcing: Results from TOGA COARE and techniques for identifying and calculating clear sky irradiance. Ph.D. dissertation, The Pennsylvania State University, 193 pp.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and T. P. Ackerman, 2000: Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects. J. Geophys. Res., 105(D12), 15 60915 626.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and D. D. Turner, 2008: A method for continuous estimation of clear-sky downwelling longwave radiative flux developed using ARM surface measurements. J. Geophys. Res., 113, D18206, doi:10.1029/2008JD009936.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., T. P. Ackerman, K. L. Gaustad, and J. N. S. Cole, 2006: Estimation of fractional sky cover from broadband shortwave radiometer measurements. J. Geophys. Res., 111, D11204, doi:10.1029/2005JD006475.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and Coauthors, 2010: AMIE (ARM MJO Investigation Experiment): Observations of the Madden–Julian oscillation for Modeling Studies Science Plan. DOE/ARM Tech. Rep. DOE/SC-ARM-10-007, 25 pp. [Available online at www.arm.gov/publications/programdocs/doe-sc-arm-10-007.pdf.]

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., M. Deng, B. Soden, and E. Zipser, 2006: Association of tropical cirrus in the 10–15-km layer with deep convective sources: An observational study combining millimeter radar data and satellite-derived trajectories. J. Atmos. Sci., 63, 480503.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., and P. R. Julian, 1994: Observations of the 40–50 day tropical oscillation—A review. Mon. Wea. Rev., 122, 814837.

  • Mather, J. H., 2005: Seasonal variability in clouds and radiation at the Manus ARM site. J. Climate, 18, 24172428.

  • Mather, J. H., T. P. Ackerman, W. E. Clements, F. J. Barnes, M. D. Ivey, L. D. Hatfield, and R. M. Reynolds, 1998: An atmospheric radiation and cloud station in the tropical western Pacific. Bull. Amer. Meteor. Soc., 79, 627642.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., S. A. McFarlane, M. A. Miller, and K. L. Johnson, 2007: Cloud products and associated heating rates in the tropical western Pacific. J. Geophys. Res., 112, D05201, doi:10.1029/2006JD007555.

    • Search Google Scholar
    • Export Citation
  • May, P. T., J. H. Mather, G. Vaughan, C. Jakob, G. M. McFarquhar, K. N. Bower, and G. G. Mace, 2008: The Tropical Warm Pool International Cloud Experiment. Bull. Amer. Meteor. Soc., 89, 629645.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., and K. F. Evans, 2004: Clouds and shortwave fluxes at Nauru. Part II: Shortwave flux closure. J. Atmos. Sci., 61, 26022615.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., K. F. Evans, and A. S. Ackerman, 2002: A Bayesian algorithm for the retrieval of liquid water cloud properties from microwave radiometer and millimeter radar data. J. Geophys. Res., 107, 4317, doi:10.1029/2001JD001011.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., J. H. Mather, and T. P. Ackerman, 2007: Analysis of tropical radiative heating profiles: A comparison of models and observations. J. Geophys. Res., 112, D14218, doi:10.1029/2006JD008290.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400.

    • Search Google Scholar
    • Export Citation
  • Moradi, I., S. A. Buehler, V. O. John, and S. Eliasson, 2010: Comparing upper tropospheric humidity data from microwave satellite instruments and tropical radiosondes. J. Geophys. Res., 115, D24310, doi:10.1029/2010JD013962.

    • Search Google Scholar
    • Export Citation
  • Neale, R., and J. Slingo, 2003: The Maritime Continent and its role in the global climate: A GCM study. J. Climate, 16, 834848.

  • Nordeen, M. L., P. Minnis, D. R. Doelling, D. Pethick, and L. Nguyen, 2001: Satellite observations of cloud plumes generated by Nauru. Geophys. Res. Lett., 28, 631634.

    • Search Google Scholar
    • Export Citation
  • Ovtchinnikov, M., T. Ackerman, R. Marchand, and M. Khairoutdinov, 2006: Evaluation of the multiscale modeling framework using data from the Atmospheric Radiation Measurement Program. J. Climate, 19, 17161729.

    • Search Google Scholar
    • Export Citation
  • Romps, D. M., and Z. Kuang, 2011: A transilient matrix for moist convection. J. Atmos. Sci., 68, 20092025.

  • Roskovensky, J. K., and K. N. Liou, 2003: Detection of thin cirrus using a combination of 1.38-μm reflectance and window brightness temperature difference. J. Geophys. Res., 108, 4570, doi:10.1029/2002JD003346.

    • Search Google Scholar
    • Export Citation
  • Roskovensky, J. K., and K. N. Liou, 2006: Simultaneous determination of aerosol and thin cirrus optical depths over oceans from MODIS data: Some case studies. J. Atmos. Sci., 63, 23072323.

    • Search Google Scholar
    • Export Citation
  • Stokes, G. M., and S. E. Schwartz, 1994: The Atmospheric Radiation Measurement (ARM) program: Programmatic background and design of the cloud and radiation test bed. Bull. Amer. Meteor. Soc., 75, 12011221.

    • Search Google Scholar
    • Export Citation
  • Thayer-Calder, K., and D. A. Randall, 2009: The role of convective moistening in the Madden–Julian oscillation. J. Atmos. Sci., 66, 32973312

    • Search Google Scholar
    • Export Citation
  • Thorsen, T. J., Q. Fu, and J. Comstock, 2011: Comparison of the CALIPSO satellite and ground-based observations of cirrus clouds at the ARM TWP sites. J. Geophys. Res., 116, D21203, doi:10.1029/2011JD015970.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and K. M. Bedka, 2009: Identifying the uncertainty in determining satellite-derived atmospheric motion vector height attribution. J. Appl. Meteor. Climatol., 48, 450463.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., C. N. Long, J. H. Mather, and X. D. Liu, 2011: Convective signals from surface measurements at ARM tropical western Pacific site: Manus. Climate Dyn., 36, 431449, doi:10.1007/s00382-009-0736-z.

    • Search Google Scholar
    • Export Citation
  • Xie, S., T. Hume, C. Jakob, S. Klein, R. McCoy, and M. Zhang, 2010: Observed large-scale structures and diabatic heating and drying profiles during TWPICE. J. Climate, 23, 5779.

    • Search Google Scholar
    • Export Citation
  • Yang, F., K. Mitchell, Y.-T. Hou, Y. Dai, X. Zeng, Z. Wang, and X.-Z. Liang, 2008: Dependence of land surface albedo on solar zenith angle: Observations and model parameterization. J. Appl. Meteor. Climatol., 47, 29632982.

    • Search Google Scholar
    • Export Citation
  • Yue, Q., and K. N. Liou, 2009: Cirrus cloud optical and microphysical properties determined from AIRS infrared spectra. Geophys. Res. Lett., 36, L05810, doi:10.1029/2008GL036502.

    • Search Google Scholar
    • Export Citation
  • Yue, Q., K. N. Liou, S. C. Ou, B. H. Kahn, P. Yang, and G. G. Mace, 2007: Interpretation of AIRS data in thin cirrus atmospheres based on a fast radiative transfer model. J. Atmos. Sci., 64, 38273842.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden–Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, Y., C. N. Long, W. B. Rossow, and E. G. Dutton, 2010: Exploiting diurnal variations to evaluate the ISCCP-FD flux calculations and radiative flux analysis processed surface observations from BSRN, ARM, and SURFRAD. J. Geophys. Res., 115, D15105, doi:10.1029/2009JD012743.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., and R. Cess, 2001: Algorithm development strategies for retrieving the downwelling longwave flux at the Earth's surface. J. Geophys. Res., 106, 12 47712 488.

    • Search Google Scholar
    • Export Citation
  • Zhu, H., H. Hendon, and C. Jakob, 2009: Convection in a parameterized and superparameterized model and its role in the representation of the MJO. J. Atmos. Sci., 66, 27962811.

    • Search Google Scholar
    • Export Citation
  • Zhu, P., and C. S. Bretherton, 2004: A simulation study of shallow moist convection and its impact on the atmospheric boundary layer. Mon. Wea. Rev., 132, 23912409.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 302 141 9
PDF Downloads 108 50 4