CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate

Nilton O. Rennó Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Nilton O. Rennó in
Current site
Google Scholar
PubMed
Close
,
Earle Williams Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

Search for other papers by Earle Williams in
Current site
Google Scholar
PubMed
Close
,
Daniel Rosenfeld Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by Daniel Rosenfeld in
Current site
Google Scholar
PubMed
Close
,
David G. Fischer NASA Glenn Research Center, Cleveland, Ohio

Search for other papers by David G. Fischer in
Current site
Google Scholar
PubMed
Close
,
Jürgen Fischer Freie Universität Berlin, Berlin, Germany

Search for other papers by Jürgen Fischer in
Current site
Google Scholar
PubMed
Close
,
Tibor Kremic NASA Glenn Research Center, Cleveland, Ohio

Search for other papers by Tibor Kremic in
Current site
Google Scholar
PubMed
Close
,
Arun Agrawal School of Natural Resources and the Environment, University of Michigan, Ann Arbor, Michigan

Search for other papers by Arun Agrawal in
Current site
Google Scholar
PubMed
Close
,
Meinrat O. Andreae Max-Planck-Institut für Chemie, Mainz, Germany

Search for other papers by Meinrat O. Andreae in
Current site
Google Scholar
PubMed
Close
,
Rosina Bierbaum School of Natural Resources and the Environment, University of Michigan, Ann Arbor, Michigan

Search for other papers by Rosina Bierbaum in
Current site
Google Scholar
PubMed
Close
,
Richard Blakeslee NASA Marshall Space Flight Center, Huntsville, Alabama

Search for other papers by Richard Blakeslee in
Current site
Google Scholar
PubMed
Close
,
Anko Boerner Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany

Search for other papers by Anko Boerner in
Current site
Google Scholar
PubMed
Close
,
Neil Bowles Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom

Search for other papers by Neil Bowles in
Current site
Google Scholar
PubMed
Close
,
Hugh Christian ESSC/NSSTC, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Hugh Christian in
Current site
Google Scholar
PubMed
Close
,
Ann Cox Orbital Sciences Corporation, Dulles, Virginia

Search for other papers by Ann Cox in
Current site
Google Scholar
PubMed
Close
,
Jason Dunion Cooperative Institute for Marine and Atmospheric Studies, University of Miami, Miami, Florida

Search for other papers by Jason Dunion in
Current site
Google Scholar
PubMed
Close
,
Akos Horvath Max-Planck-Institut für Meteorologie, Hamburg, Germany

Search for other papers by Akos Horvath in
Current site
Google Scholar
PubMed
Close
,
Xianglei Huang Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Xianglei Huang in
Current site
Google Scholar
PubMed
Close
,
Alexander Khain Hebrew University of Jerusalem, Jerusalem, Israel

Search for other papers by Alexander Khain in
Current site
Google Scholar
PubMed
Close
,
Stefan Kinne Max-Planck-Institut für Meteorologie, Hamburg, Germany

Search for other papers by Stefan Kinne in
Current site
Google Scholar
PubMed
Close
,
Maria C. Lemos School of Natural Resources and the Environment, University of Michigan, Ann Arbor, Michigan

Search for other papers by Maria C. Lemos in
Current site
Google Scholar
PubMed
Close
,
Joyce E. Penner Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan

Search for other papers by Joyce E. Penner in
Current site
Google Scholar
PubMed
Close
,
Ulrich Pöschl Max-Planck-Institut für Chemie, Mainz, Germany

Search for other papers by Ulrich Pöschl in
Current site
Google Scholar
PubMed
Close
,
Johannes Quaas Institute for Meteorology, Universität Leipzig, Leipzig, Germany

Search for other papers by Johannes Quaas in
Current site
Google Scholar
PubMed
Close
,
Elena Seran LATMOS, University of Paris VI, Paris, France

Search for other papers by Elena Seran in
Current site
Google Scholar
PubMed
Close
,
Bjorn Stevens Max-Planck-Institut für Meteorologie, Hamburg, Germany

Search for other papers by Bjorn Stevens in
Current site
Google Scholar
PubMed
Close
,
Thomas Walati Deutsches Zentrum für Luft- und Raumfahrt (DLR), Berlin, Germany

Search for other papers by Thomas Walati in
Current site
Google Scholar
PubMed
Close
, and
Thomas Wagner Institut für Umweltphysik, University of Heidelberg, Heidelberg, Germany

Search for other papers by Thomas Wagner in
Current site
Google Scholar
PubMed
Close
Restricted access

The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. The Intergovernmental Panel on Climate Change (IPCC) and the Decadal Survey indicate that the uncertainty in how clouds adjust to aerosol perturbations dominates the uncertainty in the overall quantification of the radiative forcing attributable to human activities.

Measurements by current satellites allow the determination of crude profiles of cloud particle size, but not of the activated CCN that seed them. The Clouds, Hazards, and Aerosols Survey for Earth Researchers (CHASER) mission concept responds to the IPCC and Decadal Survey concerns, utilizing a new technique and high-heritage instruments to measure all the quantities necessary to produce the first global survey maps of activated CCN and the properties of the clouds associated with them. CHASER also determines the activated CCN concentration and cloud thermodynamic forcing simultaneously, allowing the effects of each to be distinguished.

CORRESPONDING AUTHOR: Nilton O. Rennó, 2455 Hayward Street, Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109-2143, E-mail: renno@alum.mit.edu

A supplement to this article is available online (10.1175/BAMS-D-11-00239.2)

The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. The Intergovernmental Panel on Climate Change (IPCC) and the Decadal Survey indicate that the uncertainty in how clouds adjust to aerosol perturbations dominates the uncertainty in the overall quantification of the radiative forcing attributable to human activities.

Measurements by current satellites allow the determination of crude profiles of cloud particle size, but not of the activated CCN that seed them. The Clouds, Hazards, and Aerosols Survey for Earth Researchers (CHASER) mission concept responds to the IPCC and Decadal Survey concerns, utilizing a new technique and high-heritage instruments to measure all the quantities necessary to produce the first global survey maps of activated CCN and the properties of the clouds associated with them. CHASER also determines the activated CCN concentration and cloud thermodynamic forcing simultaneously, allowing the effects of each to be distinguished.

CORRESPONDING AUTHOR: Nilton O. Rennó, 2455 Hayward Street, Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109-2143, E-mail: renno@alum.mit.edu

A supplement to this article is available online (10.1175/BAMS-D-11-00239.2)

Supplementary Materials

    • Supplemental Materials (PDF 1.38 MB)
Save
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, doi:10.1126/science.245.4923.1227.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., 2009: Correlation between cloud condensation nuclei concentration and aerosol optical thickness in remote and polluted regions. Atmos. Chem. Phys., 9, 543556.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., and D. Rosenfeld, 2008: Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci. Rev., 89, 1341.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva-Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342.

    • Search Google Scholar
    • Export Citation
  • Blyth, A. M., S. G. Lasher-Trapp, and W. A. Cooper, 2005: A study of thermals in cumulus clouds. Quart. J. Roy. Meteor. Soc., 131, 11711190, doi:10.1256/qj.03.180.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., H. Pawlowska, L. Schüller, R. Preusker, J. Fischer, and Y. Fouquart, 2000: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57, 803821.

    • Search Google Scholar
    • Export Citation
  • Buechler, D. E., H. J. Christian, W. J. Koshak, and S. J. Goodman, 2011: Assessing the lifetime performance of the Lightning Imaging Sensor (LIS): Implications for the Geostationary Lightning Mapper (GLM). Proc. XIV Int. Conf. on Atmospheric Electricity, Rio de Janeiro, Brazil, International Commission on Atmospheric Electricity.

    • Search Google Scholar
    • Export Citation
  • Costantino, L., and F. M. Bréon, 2010: Analysis of aerosol-cloud interaction from multi-sensor satellite observations. Geophys. Res. Lett., 37, L11801, doi:10.1029/2009GL041828.

    • Search Google Scholar
    • Export Citation
  • Freud, E., and D. Rosenfeld, 2012: Linear relation between convective cloud drop number concentration and depth for rain initiation. J. Geophys. Res., 117, D02207, doi:10.1029/2011JD016457.

    • Search Google Scholar
    • Export Citation
  • Freud, E., D. Rosenfeld, and J. R. Kulkarni, 2011: Resolving both entrainment-mixing and number of activated CCN in deep convective clouds. Atmos. Chem. Phys., 11, 12 88712 900, doi:10.5194/acp-11-12887-2011.

    • Search Google Scholar
    • Export Citation
  • Grandey, B. S., and P. Stier, 2010: A critical look at spatial scale choices in satellite-based aerosol indirect effect studies. Atmos. Chem. Phys., 10, 11 45911 470, doi:10.5194/acp-10-11459-2010.

    • Search Google Scholar
    • Export Citation
  • Jefferson, A., 2011: Aerosol observing system (AOS) handbook. U.S. Department of Energy, Office of Science Tech. Rep. DOE/SC-ARM/TR-014, 32 pp.

    • Search Google Scholar
    • Export Citation
  • Kirchhoff, C. J., 2010: Integrating science and policy: Climate change assessments and water resources management. Ph.D. dissertation, University of Michigan, 293 pp.

    • Search Google Scholar
    • Export Citation
  • Lemos, M. C., and B. J. Morehouse, 2005: The co-production of science and policy in integrated climate assessments. Global Environ. Change, 15, 5768.

    • Search Google Scholar
    • Export Citation
  • Lemos, M. C., and R. B. Rood, 2010: Climate projections and their impact on policy and practice. Wiley Interdiscip. Rev.: Climate Change, 1, 670682.

    • Search Google Scholar
    • Export Citation
  • Lohmann, U., J. Quaas, S. Kinne, and J. Feichter, 2007: Different approaches for constraining global climate models of the anthropogenic indirect aerosol effect. Bull. Amer. Meteor. Soc., 88, 243249.

    • Search Google Scholar
    • Export Citation
  • Marshak, A., J. V. Martins, V. Zubko, and Y. J. Kaufman, 2006a: What does reflection from cloud sides tell us about vertical distribution of cloud droplet sizes. Atmos. Chem. Phys., 6, 52955305.

    • Search Google Scholar
    • Export Citation
  • Marshak, A., S. Platnick, T. Várnai, G. Wen, and R. F. Cahalan, 2006b: Impact of three-dimensional radiative effects on satellite retrievals of cloud droplet sizes. J. Geophys. Res., 111, D09207, doi:10.1029/2005JD006686.

    • Search Google Scholar
    • Export Citation
  • Marshak, A., G. Y. Wen, J. A. Coakley Jr., L. A. Remer, N. G. Loeb, and R. F. Cahalan, 2008: A simple model for the cloud adjacency effect and the apparent bluing of aerosols near clouds. J. Geophys. Res., 113, D14S17, doi:10.1029/2007JD009196.

    • Search Google Scholar
    • Export Citation
  • Martins, J. V., and Coauthors, 2007: Remote sensing the vertical profile of cloud droplet effective radius, thermodynamic phase, and temperature. Atmos. Chem. Phys. Discuss., 7, 44814519.

    • Search Google Scholar
    • Export Citation
  • McComiskey, A., and G. Feingold, 2008: Quantifying error in the radiative forcing of the first aerosol indirect effect. Geophys. Res. Lett., 35, L02810, doi:10.1029/2007GL032667.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893.

    • Search Google Scholar
    • Export Citation
  • NRC, 2007: Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond. National Academies Press, 456 pp.

    • Search Google Scholar
    • Export Citation
  • Paluch, I. R., and D. Baumgardner, 1989: Entrainment and fine scale mixing in a continental convective cloud. J. Atmos. Sci., 46, 261278.

    • Search Google Scholar
    • Export Citation
  • Penner, J. E., L. Xu, and M. Wang, 2011: Satellite methods underestimate indirect climate forcing by aerosols. Proc. Natl. Acad. Sci. USA, 108, 13 40413 408, doi:10.1073/pnas.1018526108.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., J. R. Snider, B. Stevens, G. Vali, I. Faloona, and L. M. Russell, 2006: Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical Pacific marine boundary layer. J. Geophys. Res., 111, D02206, doi:10.1029/2004JD005694.

    • Search Google Scholar
    • Export Citation
  • Quaas, J., O. Boucher, N. Bellouin, and S. Kinne, 2008: Satellite-based estimate of the direct and indirect aerosol climate forcing. J. Geophys. Res., 113, D05204, doi:10.1029/2007JD008962.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, and D. Rosenfeld, 2001: Aerosols, climate and the hydrological cycle. Science, 294, 21192124.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., 1999: TRMM observed first direct evidence of smoke from forest fires inhibiting rainfall. Geophys. Res. Lett., 26, 31053108.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and I. M. Lensky, 1998: Satellite-based insights into precipitation formation processes in continental and maritime convective clouds. Bull. Amer. Meteor. Soc., 79, 24572476.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., E. Cattani, S. Melani, and V. Levizzani, 2004: Considerations on daylight operation of 1.6- versus 3.7-μm channel on NOAA and METOP satellites. Bull. Amer. Meteor. Soc., 85, 873881.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., Y. Kaufman, and I. Koren, 2006: Switching cloud cover and dynamical regimes from open to closed Benard cells in response to aerosols suppressing precipitation. Atmos. Chem. Phys., 6, 25032511.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohmann, G. B. Raga, C. D. O'Dowd, M. Kulmata, A. Reissell, and M. O. Andreae, 2008a: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, D. Axisa, E. Freud, J. G. Hudson, and A. Givati, 2008b: Aircraft measurements of the impacts of pollution aerosols on clouds and precipitation over the Sierra Nevada. J. Geophys. Res., 113, D15203, doi:10.1029/2007JD009544.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, A. Lerner, G. Kelman, and D. T. Lindsey, 2008c: Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J. Geophys. Res., 113, D04208, doi:10.1029/2007JD008600.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld D., E. Williams, M. O. Andreae, E. Freud, U. Pöschl, and N. O. Rennó, 2012: The scientific basis for a satellite mission to retrieve CCN concentrations and their impacts on convective clouds. Atmos. Meas. Tech., 5, 20392055, doi:10.5194/amt-5-2039-2012.

    • Search Google Scholar
    • Export Citation
  • Rudich, Y., D. Rosenfeld, and O. Khersonsky, 2002: Treating clouds with a grain of salt. Geophys. Res. Lett., 29, 2060, doi:10.1029/2002GL016055.

    • Search Google Scholar
    • Export Citation
  • Savic-Jovcic, V., and B. Stevens, 2008: The structure and mesoscale organization of precipitating stratocumulus. J. Atmos. Sci., 65, 15871605.

    • Search Google Scholar
    • Export Citation
  • Seinfeld, J. H., and S. N. Pandis, 2006: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd ed. Wiley, 1203 pp.

    • Search Google Scholar
    • Export Citation
  • Sekiguchi, M., T. Nakajima, K. Suzuki, K. Kawamoto, A. Higurashi, D. Rosenfeld, I. Sano, and S. Mukai, 2003: A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters. J. Geophys. Res., 108, 4699, doi:10.1029/2002JD003359.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., G. Vali, K. Comstock, R. Wood, M. VanZanten, P. H. Austin, C. S. Bretherton, and D. H. Lenschow, 2005: Pockets of open cells (POCs) and drizzle in marine stratocumulus. Bull. Amer. Meteor. Soc., 86, 5157.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1959: The nuclei of natural cloud formation: The supersaturation in natural clouds and the variation of cloud drops concentrations. Geofis. Pura. Appl., 43, 243249.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1977: The influence of pollution on the short wave albedo of clouds. J. Atmos. Sci., 34, 11491152.

  • Williams, E., and S. Stanfill, 2002: The physical origin of the land–ocean contrast in lightning activity. C. R. Phys., 3, 12771292.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107, 8082, doi:10.1029/2001JD000380.

    • Search Google Scholar
    • Export Citation
  • Williams, E., V. C. Mushtak, D. Rosenfeld, S. J. Goodman, and D. J. Boccippio, 2005: Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate. Atmos. Res., 76, 288306.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2011: The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys., 11, 627654.

    • Search Google Scholar
    • Export Citation
  • Zhang, Z., and S. Platnick, 2011: An assessment of differences between cloud effective particle radius retrievals for marine water clouds from three MODIS spectral bands. J. Geophys. Res., 116, D20215, doi:10.1029/2011JD016216.

    • Search Google Scholar
    • Export Citation
  • Zinner, T., A. Marshak, S. Lang, J. V. Martins, and B. Mayer, 2008: Remote sensing of cloud sides of deep convection: Towards a three-dimensional retrieval of cloud particle size profiles. Atmos. Chem. Phys., 8, 47414757.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 540 190 8
PDF Downloads 285 79 4