Eastern Pacific Emitted Aerosol Cloud Experiment

Lynn M. Russell Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Lynn M. Russell in
Current site
Google Scholar
PubMed
Close
,
Armin Sorooshian Department of Chemical and Environmental Engineering, and Department of Atmospheric Sciences, University of Arizona, Tucson, Arizona

Search for other papers by Armin Sorooshian in
Current site
Google Scholar
PubMed
Close
,
John H. Seinfeld California Institute of Technology, Pasadena, California

Search for other papers by John H. Seinfeld in
Current site
Google Scholar
PubMed
Close
,
Bruce A. Albrecht Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida

Search for other papers by Bruce A. Albrecht in
Current site
Google Scholar
PubMed
Close
,
Athanasios Nenes School of Earth and Atmospheric Sciences, and School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Athanasios Nenes in
Current site
Google Scholar
PubMed
Close
,
Lars Ahlm Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Lars Ahlm in
Current site
Google Scholar
PubMed
Close
,
Yi-Chun Chen California Institute of Technology, Pasadena, California

Search for other papers by Yi-Chun Chen in
Current site
Google Scholar
PubMed
Close
,
Matthew Coggon California Institute of Technology, Pasadena, California

Search for other papers by Matthew Coggon in
Current site
Google Scholar
PubMed
Close
,
Jill S. Craven California Institute of Technology, Pasadena, California

Search for other papers by Jill S. Craven in
Current site
Google Scholar
PubMed
Close
,
Richard C. Flagan California Institute of Technology, Pasadena, California

Search for other papers by Richard C. Flagan in
Current site
Google Scholar
PubMed
Close
,
Amanda A. Frossard Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Amanda A. Frossard in
Current site
Google Scholar
PubMed
Close
,
Haflidi Jonsson Center for Interdisciplinary Remotely-Piloted Aerosol Studies, Marina, California

Search for other papers by Haflidi Jonsson in
Current site
Google Scholar
PubMed
Close
,
Eunsil Jung Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida

Search for other papers by Eunsil Jung in
Current site
Google Scholar
PubMed
Close
,
Jack J. Lin School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Search for other papers by Jack J. Lin in
Current site
Google Scholar
PubMed
Close
,
Andrew R. Metcalf California Institute of Technology, Pasadena, California. *CURRENT AFFILIATION: Combustion Research Facility, Sandia National Laboratories, Livermore, California

Search for other papers by Andrew R. Metcalf in
Current site
Google Scholar
PubMed
Close
,
Robin Modini Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Robin Modini in
Current site
Google Scholar
PubMed
Close
,
Johannes Mülmenstädt Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California

Search for other papers by Johannes Mülmenstädt in
Current site
Google Scholar
PubMed
Close
,
Greg Roberts Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, and Groupe d'études de l'Atmosphère Météorologique, Centre National de la Recherche Scientifique, Toulouse, France

Search for other papers by Greg Roberts in
Current site
Google Scholar
PubMed
Close
,
Taylor Shingler Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona

Search for other papers by Taylor Shingler in
Current site
Google Scholar
PubMed
Close
,
Siwon Song Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida

Search for other papers by Siwon Song in
Current site
Google Scholar
PubMed
Close
,
Zhen Wang Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona

Search for other papers by Zhen Wang in
Current site
Google Scholar
PubMed
Close
, and
Anna Wonaschütz Department of Atmospheric Sciences, University of Arizona, Tucson, Arizona

Search for other papers by Anna Wonaschütz in
Current site
Google Scholar
PubMed
Close
Restricted access

Aerosol–cloud–radiation interactions are widely held to be the largest single source of uncertainty in climate model projections of future radiative forcing due to increasing anthropogenic emissions. The underlying causes of this uncertainty among modeled predictions of climate are the gaps in our fundamental understanding of cloud processes. There has been significant progress with both observations and models in addressing these important questions but quantifying them correctly is nontrivial, thus limiting our ability to represent them in global climate models. The Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) 2011 was a targeted aircraft campaign with embedded modeling studies, using the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft and the research vessel Point Sur in July and August 2011 off the central coast of California, with a full payload of instruments to measure particle and cloud number, mass, composition, and water uptake distributions. EPEACE used three emitted particle sources to separate particle-induced feedbacks from dynamical variability, namely 1) shipboard smoke-generated particles with 0.05–1-μm diameters (which produced tracks measured by satellite and had drop composition characteristic of organic smoke), 2) combustion particles from container ships with 0.05–0.2-μm diameters (which were measured in a variety of conditions with droplets containing both organic and sulfate components), and 3) aircraft-based milled salt particles with 3–5-μm diameters (which showed enhanced drizzle rates in some clouds). The aircraft observations were consistent with past large-eddy simulations of deeper clouds in ship tracks and aerosol– cloud parcel modeling of cloud drop number and composition, providing quantitative constraints on aerosol effects on warm-cloud microphysics.

CORRESPONDING AUTHOR: Lynn M. Russell, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., Mail Code 0221, La Jolla, CA 92093-0221, E-mail: lmrussell@ucsd.edu

A supplement to this article is available online (10.1175/BAMS-D-12-00015.2)

Aerosol–cloud–radiation interactions are widely held to be the largest single source of uncertainty in climate model projections of future radiative forcing due to increasing anthropogenic emissions. The underlying causes of this uncertainty among modeled predictions of climate are the gaps in our fundamental understanding of cloud processes. There has been significant progress with both observations and models in addressing these important questions but quantifying them correctly is nontrivial, thus limiting our ability to represent them in global climate models. The Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) 2011 was a targeted aircraft campaign with embedded modeling studies, using the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft and the research vessel Point Sur in July and August 2011 off the central coast of California, with a full payload of instruments to measure particle and cloud number, mass, composition, and water uptake distributions. EPEACE used three emitted particle sources to separate particle-induced feedbacks from dynamical variability, namely 1) shipboard smoke-generated particles with 0.05–1-μm diameters (which produced tracks measured by satellite and had drop composition characteristic of organic smoke), 2) combustion particles from container ships with 0.05–0.2-μm diameters (which were measured in a variety of conditions with droplets containing both organic and sulfate components), and 3) aircraft-based milled salt particles with 3–5-μm diameters (which showed enhanced drizzle rates in some clouds). The aircraft observations were consistent with past large-eddy simulations of deeper clouds in ship tracks and aerosol– cloud parcel modeling of cloud drop number and composition, providing quantitative constraints on aerosol effects on warm-cloud microphysics.

CORRESPONDING AUTHOR: Lynn M. Russell, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr., Mail Code 0221, La Jolla, CA 92093-0221, E-mail: lmrussell@ucsd.edu

A supplement to this article is available online (10.1175/BAMS-D-12-00015.2)

Supplementary Materials

    • Supplemental Materials (PDF 140.84 MB)
Save
  • Ackerman, A. S., O. B. Toon, D. E. Stevens, and J. A. Coakley Jr., 2003: Enhancement of cloud cover and suppression of nocturnal drizzle in stratocumulus polluted by haze. Geophys. Res. Lett., 30, 1381, doi:10.1029/2002gl016634.

    • Search Google Scholar
    • Export Citation
  • Ackerman, A. S., M. P. Kirkpatrick, D. E. Stevens, and O. B. Toon, 2004: The impact of humidity above stratiform clouds on indirect aerosol climate forcing. Nature, 432, 10141017, doi:10.1038/nature03174.

    • Search Google Scholar
    • Export Citation
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230.

  • Allen, G., and Coauthors, 2011: South east Pacific atmospheric composition and variability sampled along 20° S during VOCALS-REx. Atmos. Chem. Phys., 11, 52375262, doi:10.5194/acp-11-5237-2011.

    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 65, 11701185.

  • Brenguier, J. L., H. Pawlowska, L. Schuller, R. Preusker, J. Fischer, and Y. Fouquart, 2000: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57, 803821.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., R. Wood, R. C. George, D. Leon, G. Allen, and X. Zheng, 2010: Southeast Pacific stratocumulus clouds, precipitation and boundary layer structure sampled along 20° S during VOCALS-REx. Atmos. Chem. Phys., 10, 10 63910 654, doi:10.5194/acp-10-10639-2010.

    • Search Google Scholar
    • Export Citation
  • Caldwell, P., and C. S. Bretherton, 2009: Response of a subtropical stratocumulus-capped mixed layer to climate and aerosol changes. J. Climate, 22, 2038.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-C., L. Xue, Z. J. Lebo, H. Wang, R. M. Rasmussen, and J. H. Seinfeld, 2011: A comprehensive numerical study of aerosol-cloud-precipitation interactions in marine stratocumulus. Atmos. Chem. Phys., 11, 97499769, doi:10.5194/acp-11-9749-2011.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-C., M. W. Christensen, L. Xue, A. Sorooshian, G. L. Stephens, R. M. Rasmussen, and J. H. Seinfeld, 2012: Occurrence of lower cloud albedo in ship tracks. Atmos. Chem. Phys. Discuss., 12, 13 55313 580, doi: 10.5194/acpd-12-13553-2012.

    • Search Google Scholar
    • Export Citation
  • Christensen, M. W., and G. L. Stephens, 2011: Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: Evidence of cloud deepening. J. Geophys. Res., 116, D03201, doi:10.1029/2010jd014638.

    • Search Google Scholar
    • Export Citation
  • Coakley, J. A., and C. D. Walsh, 2002: Limits to the aerosol indirect radiative effect derived from observations of ship tracks. J. Atmos. Sci., 59, 668680.

    • Search Google Scholar
    • Export Citation
  • Coakley, J. A., R. L. Bernstein, and P. A. Durkee, 1987: Effect of ship-stack effluents on cloud reflectivity. Science, 237, 10201022.

    • Search Google Scholar
    • Export Citation
  • Coakley, J. A., and Coauthors, 2000: The appearance and disappearance of ship tracks on large spatial scales. J. Atmos. Sci., 57, 27652778.

    • Search Google Scholar
    • Export Citation
  • Coggon, M. M., and Coauthors, 2012: Ship impacts on the marine atmosphere: Insights into the contribution of shipping emissions to the properties of marine aerosol and clouds. Atmos. Chem. Phys. Discuss., 12, 14 39314 445, doi:10.5194/acpd-12-14393-2012.

    • Search Google Scholar
    • Export Citation
  • Conover, J. H., 1966: Anomalous cloud lines. J. Atmos. Sci., 23, 778785.

  • Conover, J. H., 1969: New observations of anomalous cloud lines. J. Atmos. Sci., 26, 11531154.

  • Crahan, K. K., D. A. Hegg, D. S. Covert, H. Jonsson, J. S. Reid, D. Khelif, and B. J. Brooks, 2004: Speciation of organic aerosols in the tropical mid-Pacific and their relationship to light scattering. J. Atmos. Sci., 61, 25442558.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., E. E. Ebert, and G. F. Herman, 1988: Mean and turbulence structure of the summertime Arctic cloudy boundary layer. Quart. J. Roy. Meteor. Soc., 114, 715746.

    • Search Google Scholar
    • Export Citation
  • Drofa, A. S., V. N. Ivanov, D. Rosenfeld, and A. G. Shilin, 2010: Studying an effect of salt powder seeding used for precipitation enhancement from convective clouds. Atmos. Chem. Phys., 10, 80118023, doi:10.5194/acp-10-8011-2010.

    • Search Google Scholar
    • Export Citation
  • Durkee, P. A., and Coauthors, 2000a: Composite ship track characteristics. J. Atmos. Sci., 57, 25422553.

  • Durkee, P. A., and Coauthors, 2000b: The impact of ship-produced aerosols on the microstructure and albedo of warm marine stratocumulus clouds: A test of MAST hypotheses 1i and 1ii. J. Atmos. Sci., 57, 25542569.

    • Search Google Scholar
    • Export Citation
  • Durkee, P. A., K. J. Noone, and R. T. Bluth, 2000c: The Monterey Area Ship Track Experiment. J. Atmos. Sci., 57, 25232541.

  • Faloona, I., and Coauthors, 2005: Observations of entrainment in eastern Pacific marine stratocumulus using three conserved scalars. J. Atmos. Sci., 62, 32683285.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., and H. Siebert, 2009: Cloud-aerosol interactions from the micro to the cloud scale. Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, Atmospheric Dynamics, and Precipitation, J. Heintzenberg and R. J. Charlson, Eds., MIT Press, 319338.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., S. M. Kreidenweis, and Y. Zhang, 1998: Stratocumulus processing of gases and cloud condensation nuclei: 1. Trajectory ensemble model. J. Geophys. Res., 103(D16), 19 52719 542.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., W. R. Cotton, S. M. Kreidenweis, and J. T. Davis, 1999: The impact of giant cloud condensation nuclei on drizzle formation in stratocumulus: Implications for cloud radiative properties. J. Atmos. Sci., 56, 41004117.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., R. Furrer, P. Pilewskie, L. A. Remer, Q. L. Min, and H. Jonsson, 2006: Aerosol indirect effect studies at Southern Great Plains during the May 2003 intensive operations period. J. Geophys. Res., 111, D05S14, doi:10.1029/2004jd005648.

    • Search Google Scholar
    • Export Citation
  • Feingold, G., I. Koren, H. L. Wang, H. W. Xue, and W. A. Brewer, 2010: Precipitation-generated oscillations in open cellular cloud fields. Nature, 466, 849852, doi:10.1038/nature09314.

    • Search Google Scholar
    • Export Citation
  • Ferek, R. J., D. A. Hegg, P. V. Hobbs, P. Durkee, and K. Nielsen, 1998: Measurements of ship-induced tracks in clouds off the Washington coast. J. Geophys. Res., 103(D18), 23 19923 206.

    • Search Google Scholar
    • Export Citation
  • Ferek, R. J., and Coauthors, 2000: Drizzle suppression in ship tracks. J. Atmos. Sci., 57, 27072728.

  • Frick, G. M., and W. A. Hoppel, 2000: Airship measurements of ship's exhaust plumes and their effect on marine boundary layer clouds. J. Atmos. Sci., 57, 26252648.

    • Search Google Scholar
    • Export Citation
  • Ghate, V. P., B. A. Albrecht, P. Kollias, H. H. Jonsson, and D. W. Breed, 2007: Cloud seeding as a technique for studying aerosol-cloud interactions in marine stratocumulus. Geophys. Res. Lett., 34, L14807, doi:10.1029/2007gl029748.

    • Search Google Scholar
    • Export Citation
  • Hawkins, L. N., L. M. Russell, C. H. Twohy, and J. R. Anderson, 2008: Uniform particle-droplet partitioning of 18 organic and elemental components measured in and below DYCOMS-II stratocumulus clouds. J. Geophys. Res., 113, D14201, doi:10.1029/2007jd009150.

    • Search Google Scholar
    • Export Citation
  • Hegg, D. A., and P. V. Hobbs, 1986: Sulfate and nitrate chemistry in cumuliform clouds. Atmos. Environ., 20, 901909.

  • Hegg, D. A., D. S. Covert, and H. H. Jonsson, 2008: Measurements of size-resolved hygroscopicity in the California coastal zone. Atmos. Chem. Phys., 8, 71937203.

    • Search Google Scholar
    • Export Citation
  • Hegg, D. A., D. S. Covert, H. H. Jonsson, and R. Woods, 2009: Differentiating natural and anthropogenic cloud condensation nuclei in the California coastal zone. Tellus, 61B, 669676, doi:10.1111/j.1600-0889.2009.00435.x.

    • Search Google Scholar
    • Export Citation
  • Hegg, D. A., D. S. Covert, H. H. Jonsson, and R. Woods, 2012: A simple relationship between cloud drop number concentration and precursor aerosol concentration for the regions of Earth's large marine stratocumulus decks. Atmos. Chem. Phys., 12, 12291238, doi:10.5194/acp-12-1229-2012.

    • Search Google Scholar
    • Export Citation
  • Hersey, S. P., A. Sorooshian, S. M. Murphy, R. C. Flagan, and J. H. Seinfeld, 2009: Aerosol hygroscopicity in the marine atmosphere: A closure study using high-time-resolution, multiple-RH DASH-SP and size-resolved C-ToF-AMS data. Atmos. Chem. Phys., 9, 25432554.

    • Search Google Scholar
    • Export Citation
  • Hill, A. A., G. Feingold, and H. L. Jiang, 2009: The influence of entrainment and mixing assumption on aerosol–cloud interactions in marine stratocumulus. J. Atmos. Sci., 66, 14501464.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and Coauthors, 2000: Emissions from ships with respect to their effects on clouds. J. Atmos. Sci., 57, 25702590.

  • Hsieh, W. C., A. Nenes, R. C. Flagan, J. H. Seinfeld, G. Buzorius, and H. Jonsson, 2009: Parameterization of cloud droplet size distributions: Comparison with parcel models and observations. J. Geophys. Res., 114, D11205, doi:10.1029/2008jd011387.

    • Search Google Scholar
    • Export Citation
  • Jensen, J. B., and S. Lee, 2008: Giant sea-salt aerosols and warm rain formation in marine stratocumulus. J. Atmos. Sci., 65, 36783694.

    • Search Google Scholar
    • Export Citation
  • Jiang, H. L., G. Feingold, and A. Sorooshian, 2010: Effect of aerosol on the susceptibility and efficiency of precipitation in warm trade cumulus clouds. J. Atmos. Sci., 67, 35253540.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stratiform clouds. J. Climate, 6, 15871606.

  • L'Ecuyer, T. S., W. Berg, J. Haynes, M. Lebsock, and T. Takemura, 2009: Global observations of aerosol impacts on precipitation occurrence in warm maritime clouds. J. Geophys. Res., 114, D09211, doi:10.1029/2008jd011273.

    • Search Google Scholar
    • Export Citation
  • Lance, S., C. A. Brock, D. Rogers, and J. A. Gordon, 2010: Water droplet calibration of the cloud droplet probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmos. Meas. Tech., 3, 16831706, doi:10.5194/amt-3-1683-2010.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1968: Models of cloud-topped mixed layers under a strong inversion. Quart. J. Roy. Meteor. Soc., 94, 292309.

  • Lu, M.-L., and J. H. Seinfeld, 2005: Study of the aerosol indirect effect by large-eddy simulation of marine stratocumulus. J. Atmos. Sci., 62, 39093932.

    • Search Google Scholar
    • Export Citation
  • Lu, M.-L., and J. H. Seinfeld, 2006: Effect of aerosol number concentration on cloud droplet dispersion: A large-eddy simulation study and implications for aerosol indirect forcing. J. Geophys. Res., 111, D02207, doi:10.1029/2005jd006419.

    • Search Google Scholar
    • Export Citation
  • Lu, M.-L., W. C. Conant, H. H. Jonsson, V. Varutbangkul, R. C. Flagan, and J. H. Seinfeld, 2007: The Marine Stratus/Stratocumulus Experiment (MASE): Aerosol-cloud relationships in marine stratocumulus. J. Geophys. Res., 112, D10209, doi:10.1029/2006jd007985.

    • Search Google Scholar
    • Export Citation
  • Lu, M.-L., A. Sorooshian, H. H. Jonsson, G. Feingold, R. C. Flagan, and J. H. Seinfeld, 2009: Marine stratocumulus aerosol-cloud relationships in the MASE-II experiment: Precipitation susceptibility in eastern Pacific marine stratocumulus. J. Geophys. Res., 114, D24203, doi:10.1029/2009jd012774.

    • Search Google Scholar
    • Export Citation
  • Meskhidze, N., A. Nenes, W. C. Conant, and J. H. Seinfeld, 2005: Evaluation of a new cloud droplet activation parameterization with in situ data from CRYSTAL-FACE and CSTRIPE. J. Geophys. Res., 110, D16202, doi:10.1029/2004jd005703.

    • Search Google Scholar
    • Export Citation
  • Ming, Y., and L. M. Russell, 2004: Organic aerosol effects on fog droplet spectra. J. Geophys. Res., 109, D10206, doi:10.1029/2003jd004427.

    • Search Google Scholar
    • Export Citation
  • Moore, R. H., and A. Nenes, 2009: Scanning flow CCN analysis—A method for fast measurements of CCN spectra. Aerosol Sci. Technol., 43, 11921207, doi:10.1080/02786820903289780.

    • Search Google Scholar
    • Export Citation
  • Noone, K. J., and Coauthors, 2000a: A case study of ship track formation in a polluted marine boundary layer. J. Atmos. Sci., 57, 27482764.

    • Search Google Scholar
    • Export Citation
  • Noone, K. J., and Coauthors, 2000b: A case study of ships forming and not forming tracks in moderately polluted clouds. J. Atmos. Sci., 57, 27292747.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., J. R. Snider, B. Stevens, G. Vali, I. Faloona, and L. M. Russell, 2006: Accumulation mode aerosol, pockets of open cells, and particle nucleation in the remote subtropical Pacific marine boundary layer. J. Geophys. Res., 111, D02206, doi:10.1029/2004jd005694.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., and Coauthors, 2000: The role of background cloud microphysics in the radiative formation of ship tracks. J. Atmos. Sci., 57, 26072624.

    • Search Google Scholar
    • Export Citation
  • Radke, L. F., J. A. Coakley Jr., and M. D. King, 1989: Direct and remote sensing observations of the effects of ships on clouds. Science, 246, 11461149.

    • Search Google Scholar
    • Export Citation
  • Reisin, T., Z. Levin, and S. Tzivion, 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics. Part I: Description of the model. J. Atmos. Sci., 53, 497519.

    • Search Google Scholar
    • Export Citation
  • Reutter, P., and Coauthors, 2009: Aerosol- and updraft-limited regimes of cloud droplet formation: Influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN). Atmos. Chem. Phys., 9, 70677080.

    • Search Google Scholar
    • Export Citation
  • Roberts, G. C., and A. Nenes, 2005: A continuous-flow streamwise thermal-gradient CCN chamber for atmospheric measurements. Aerosol Sci. Technol., 39, 206221, doi:10.1080/027868290913988.

    • Search Google Scholar
    • Export Citation
  • Roberts, G. C., M. V. Ramana, C. Corrigan, D. Kim, and V. Ramanathan, 2008: Simultaneous observations of aerosol–cloud–albedo interactions with three stacked unmanned aerial vehicles. Proc. Natl. Acad. Sci. USA, 105, 73707375, doi:10.1073/pnas.0710308105.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., D. Axisa, W. L. Woodley, and R. Lahav, 2010: A quest for effective hygroscopic cloud seeding. J. Appl. Meteor. Climatol., 49, 15481562.

    • Search Google Scholar
    • Export Citation
  • Ruehl, C. R., P. Y. Chuang, and A. Nenes, 2009: Distinct CCN activation kinetics above the marine boundary layer along the California coast. Geophys. Res. Lett., 36, L15814, doi:10.1029/2009gl038839.

    • Search Google Scholar
    • Export Citation
  • Russell, L. M., and J. H. Seinfeld, 1998: Size- and composition-resolved externally mixed aerosol model. Aerosol Sci. Technol., 28, 403416.

    • Search Google Scholar
    • Export Citation
  • Russell, L. M., and Coauthors, 1999: Aerosol dynamics in ship tracks. J. Geophys. Res., 104(D24), 31 07731 095.

  • Sandu, I., J. L. Brenguier, O. Thouron, and B. Stevens, 2009: How important is the vertical structure for the representation of aerosol impacts on the diurnal cycle of marine stratocumulus? Atmos. Chem. Phys., 9, 40394052.

    • Search Google Scholar
    • Export Citation
  • Savic-Jovcic, V., and B. Stevens, 2008: The structure and mesoscale organization of precipitating stratocumulus. J. Atmos Sci., 65, 15871605.

    • Search Google Scholar
    • Export Citation
  • Schreier, M., H. Mannstein, V. Eyring, and H. Bovensmann, 2007: Global ship track distribution and radiative forcing from 1 year of AATSR data. Geophys.Res. Lett., 34, L17814, doi:10.1029/2007gl030664.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., J. S. Wakefield, E. J. Steiner, and S. K. Cox, 1979a: Marine stratocumulus convection. Part I: Governing equations and horizontally homogeneous solutions. J. Atmos. Sci., 36, 12861307.

    • Search Google Scholar
    • Export Citation
  • Schubert, W. H., J. S. Wakefield, E. J. Steiner, and S. K. Cox, 1979b: Marine stratocumulus convection. Part II: Horizontally inhomogeneous solutions. J. Atmos. Sci., 36, 13081324.

    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., 1987: Ship trails. Atmos. Environ., 21, 14171425.

  • Segrin, M. S., J. A. Coakley, and W. R. Tahnk, 2007: MODIS observations of ship tracks in summertime stratus off the West Coast of the United States. J. Atmos. Sci., 64, 43304345.

    • Search Google Scholar
    • Export Citation
  • Sharon, T. M., B. A. Albrecht, H. H. Jonsson, P. Minnis, M. M. Khaiyer, T. M. van Reken, J. Seinfeld, and R. Flagan, 2006: Aerosol and cloud microphysical characteristics of rifts and gradients in maritime stratocumulus clouds. J. Atmos. Sci., 63, 983997.

    • Search Google Scholar
    • Export Citation
  • Shingler, T., and Coauthors, 2012: Characterisation and airborne deployment of a new counterflow virtual impactor inlet. Atmos. Meas. Tech., 5, 12591269, doi:10.5194/amt-5-1259-2012.

    • Search Google Scholar
    • Export Citation
  • Solomon, S., D. Qin, M. Manning, M. Marquis, K. Averyt, M. M. B. Tignor, H. L. Miller Jr., and Z. Chen, Eds., 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, A., M. L. Lu, F. J. Brechtel, H. Jonsson, G. Feingold, R. C. Flagan, and J. H. Seinfeld, 2007: On the source of organic acid aerosol layers above clouds. Environ. Sci. Technol., 41, 46474654, doi:10.1021/es0630442.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, A., and Coauthors, 2009a: On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California. Global Biogeochem. Cycles, 23, GB4007, doi:10.1029/2009gb003464.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, A., G. Feingold, M. D. Lebsock, H. L. Jiang, and G. L. Stephens, 2009b: On the precipitation susceptibility of clouds to aerosol perturbations. Geophys. Res. Lett., 36, L13803, doi:10.1029/2009gl038993.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, A., J. Csavina, T. Shingler, S. Dey, F. Brechtel, E. Sáez, and E. Betterton, 2012: Hygroscopic and chemical properties of aerosols collected near a copper smelter: Implications for public and environmental health. Environ. Sci. Technol., 46, 94739480, doi:10.1021/es302275k.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and Coauthors, 2003: Dynamics and chemistry of marine stratocumulus— DYCOMS-II. Bull. Amer. Meteor. Soc., 84, 579593.

  • Stevens, B., G. Vali, K. Comstock, R. Wood, M. C. Van Zanten, P. H. Austin, C. S. Bretherton, and D. H. Lenschow, 2005: Pockets of open cells and drizzle in marine stratocumulus. Bull. Amer. Meteor. Soc., 86, 5157.

    • Search Google Scholar
    • Export Citation
  • Su, W. Y., N. G. Loeb, K.-M. Xu, G. L. Schuster, and Z. A. Eitzen, 2010: An estimate of aerosol indirect effect from satellite measurements with concurrent meteorological analysis. J. Geophys. Res., 115, D18219, doi:10.1029/2010jd013948.

    • Search Google Scholar
    • Export Citation
  • Sullivan, A. P., R. E. Peltier, C. A. Brock, J. A. de Gouw, J. S. Holloway, C. Warneke, A. G. Wollny, and R. J. Weber, 2006: Airborne measurements of carbonaceous aerosol soluble in water over northeastern United States: Method development and an investigation into water-soluble organic carbon sources. J. Geophys. Res., 111, D23S46, doi:10.1029/2006jd007072.

    • Search Google Scholar
    • Export Citation
  • Twohy, C. H., M. D. Petters, J. R. Snider, B. Stevens, W. Tahnk, M. Wetzel, L. Russell, and F. Burnet, 2005: Evaluation of the aerosol indirect effect in marine stratocumulus clouds: Droplet number, size, liquid water path, and radiative impact. J. Geophys. Res., 110, D08203, doi:10.1029/2004jd005116.

    • Search Google Scholar
    • Export Citation
  • Twomey, S., 1991: Aerosols, clouds and radiation. Atmos. Environ., 25A, 24352442.

  • Twomey, S., H. B. Howell, and T. A. Wojciech, 1968: Comments on anomalous cloud lines. J. Atmos. Sci., 25, 333334.

  • Tzivion, S., G. Feingold, and Z. Levin, 1987: An efficient numerical solution to the stochastic collection equation. J. Atmos. Sci., 44, 31393149.

    • Search Google Scholar
    • Export Citation
  • Tzivion, S., G. Feingold, and Z. Levin, 1989: The evolution of raindrop spectra. Part II: Collisional collection/breakup and evaporation in a rainshaft. J. Atmos. Sci., 46, 33123327.

    • Search Google Scholar
    • Export Citation
  • Van Zanten, M. C., and B. Stevens, 2005: Observations of the structure of heavily precipitating marine stratocumulus. J. Atmos. Sci., 62, 43274342.

    • Search Google Scholar
    • Export Citation
  • Wang, H., G. Feingold, R. Wood, and J. Kazil, 2010: Modelling microphysical and meteorological controls on precipitation and cloud cellular structures in southeast Pacific stratocumulus. Atmos. Chem. Phys., 10, 63476362, doi:10.5194/acp-10-6347-2010.

    • Search Google Scholar
    • Export Citation
  • Wilcox, E. M., G. Roberts, and V. Ramanathan, 2006: Influence of aerosols on the shortwave cloud radiative forcing from North Pacific oceanic clouds: Results from the Cloud Indirect Forcing Experiment (CIFEX). Geophys. Res. Lett., 33, L21804, doi:10.1029/2006gl027150.

    • Search Google Scholar
    • Export Citation
  • Wood, R., T. L. Kubar, and D. L. Hartmann, 2009: Understanding the importance of microphysics and macrophysics for warm rain in marine low clouds. Part II: Heuristic models of rain formation. J. Atmos. Sci., 66, 29732990.

    • Search Google Scholar
    • Export Citation
  • Wood, R., C. S. Bretherton, D. Leon, A. D. Clarke, P. Zuidema, G. Allen, and H. Coe, 2011a: An aircraft case study of the spatial transition from closed to open mesoscale cellular convection over the southeast Pacific. Atmos. Chem. Phys., 11, 23412370, doi:10.5194/acp-11-2341-2011.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and Coauthors, 2011b: The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys., 11, 627654, doi:10.5194/acp-11-627-2011.

    • Search Google Scholar
    • Export Citation
  • Woodcock, A. H., 1950: Condensation nuclei and precipitation. J Meteor., 7, 161162.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3746 864 84
PDF Downloads 1567 395 25