Wind Energy Meteorology: Insight into Wind Properties in the Turbine-Rotor Layer of the Atmosphere from High-Resolution Doppler Lidar

Robert M. Banta National Oceanic and Atmospheric Administration/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Robert M. Banta in
Current site
Google Scholar
PubMed
Close
,
Yelena L. Pichugina Cooperative Institute for Research in the Environmental Sciences, University of Colorado, and National Oceanic and Atmospheric Administration/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Yelena L. Pichugina in
Current site
Google Scholar
PubMed
Close
,
Neil D. Kelley National Wind Technology Center, National Renewable Energy Laboratory, Golden, Colorado
Retired

Search for other papers by Neil D. Kelley in
Current site
Google Scholar
PubMed
Close
,
R. Michael Hardesty National Oceanic and Atmospheric Administration/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by R. Michael Hardesty in
Current site
Google Scholar
PubMed
Close
, and
W. Alan Brewer National Oceanic and Atmospheric Administration/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by W. Alan Brewer in
Current site
Google Scholar
PubMed
Close
Restricted access

Addressing the need for high-quality wind information aloft in the layer occupied by turbine rotors (~30–150 m above ground level) is one of many significant challenges facing the wind energy industry. Without wind measurements at heights within the rotor sweep of the turbines, characteristics of the flow in this layer are unknown for wind energy and modeling purposes. Since flow in this layer is often decoupled from the surface, near-surface measurements are prone to errant extrapolation to these heights, and the behavior of the near-surface winds may not reflect that of the upper-level flow.

CORRESPONDING AUTHOR: Robert Banta, NOAA/ESRL, 325 Broadway, Boulder, CO 80305, E-mail:robert.banta@noaa.gov

Addressing the need for high-quality wind information aloft in the layer occupied by turbine rotors (~30–150 m above ground level) is one of many significant challenges facing the wind energy industry. Without wind measurements at heights within the rotor sweep of the turbines, characteristics of the flow in this layer are unknown for wind energy and modeling purposes. Since flow in this layer is often decoupled from the surface, near-surface measurements are prone to errant extrapolation to these heights, and the behavior of the near-surface winds may not reflect that of the upper-level flow.

CORRESPONDING AUTHOR: Robert Banta, NOAA/ESRL, 325 Broadway, Boulder, CO 80305, E-mail:robert.banta@noaa.gov
Save
  • Banta, R. M., 1984: Daytime boundary-layer evolution over mountainous terrain. Part I: Observations of the dry circulations. Mon. Wea. Rev., 112, 340356.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 1985: Late-morning jump in TKE in the mixed layer over a mountain basin. J. Atmos. Sci., 42, 407411.

  • Banta, R. M., 1986: Daytime boundary-layer evolution over mountainous terrain. Part II: Numerical studies of upslope flow duration. Mon. Wea. Rev., 114, 11121130.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 2008: Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophys., 56, 5887.

  • Banta, R. M., 2010: High-resolution verification of mesoscale models using remote-sensing measurements. Proc. Fifth Int. Symp. on Computational Wind Engineering, Chapel Hill, NC, Renaissance Computing Institute. [Available online at ftp://ftp.atdd.noaa.gov/pub/cwe2010/Files/Papers/560_banta.pdf.]

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and Y. L. Pichugina, 2010: Reducing wind energy forecast uncertainty through improved measurements and modeling. Preprints, First Conf. on Weather, Climate, and the New Energy Economy, Atlanta, GA, Amer. Meteor. Soc., J7.1. [Available online at https://ams.confex.com/ams/90annual/techprogram/paper_161012.htm.]

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., L. S. Darby, P. Kaufmann, D. H. Levinson, and C.-J. Zhu, 1999: Wind flow patterns in the Grand Canyon as revealed by Doppler lidar. J. Appl. Meteor., 38, 10691083.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105, 221252.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and R. K. Newsom, 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60, 25492555.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., L. S. Darby, J. D. Fast, J. O. Pinto, C. D. Whiteman, W. J. Shaw, and B. D. Orr, 2004: Nocturnal low-level jet in a mountain basin complex. Part I: Evolution and implications to other flow features. J. Appl. Meteor., 43, 13481365.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and W. A. Brewer, 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63, 27002719.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and W. A. Brewer, 2010: Addressing measurement needs for wind energy modeling using ground-based Doppler lidar. Proc. Fifth Int. Symp. on Computational Wind Engineering, Chapel Hill, NC, IAWE. [Available online at ftp://ftp.atdd.noaa.gov/pub/cwe2010/Files/Papers/567_banta.pdf.]

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, R. M. Hardesty, and W. A. Brewer, 2012: State of the art improvements in atmospheric boundary-layer science needed to support wind energy. Preprints, Third Conf. on Weather, Climate, and the New Energy Economy, New Orleans, LA, Amer. Meteor. Soc., 12.1. [Available online at https://ams.confex.com/ams/92Annual/webprogram/Paper202799.html.]

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7, 105113.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., and D. R. Novak, 2010: The New York Bight jet: Climatology and dynamical evolution. Mon. Wea. Rev., 138, 23852404.

  • Cuxart, J., 2008: Nocturnal basin low-level jets: An integrated study. Acta Geophys., 56, 100113.

  • Dabberdt, W. F., and Coauthors, 2004: Meteorological research needs for improved air quality forecasting: Report of the 11th Prospectus Development Team of the U.S. Weather Research Program. Bull. Amer. Meteor. Soc., 85, 563586.

    • Search Google Scholar
    • Export Citation
  • Darby, L. S., and G. S. Poulos, 2006: The evolution of lee-wave–rotor activity in the lee of Pike's Peak under the influence of a cold frontal passage: Implications for aircraft safety. Mon. Wea. Rev., 134, 28572876.

    • Search Google Scholar
    • Export Citation
  • Darby, L. S., and Coauthors, 2002: Vertical variations in O3 concentrations before and after a gust front passage. J. Geophys. Res., 107, 4176, doi:10.1029/2001JD000996.

    • Search Google Scholar
    • Export Citation
  • Darby, L. S., K. J. Allwine, and R. M. Banta, 2006: Nocturnal low-level jet in a mountain basin complex. Part II: Transport and diffusion of tracer under stable conditions. J. Appl. Meteor. Climatol., 45, 740753.

    • Search Google Scholar
    • Export Citation
  • Darby, L. S., and Coauthors, 2007: Ozone differences between near-coastal and offshore sites in New England: Role of meteorology. J. Geophys. Res., 112, D16S91, doi:10.1029/2007JD008446.

    • Search Google Scholar
    • Export Citation
  • Drechsel, S., G. J. Mayr, J. W. Messner, and R. Stauffer, 2012: Lower boundary wind speeds: Measurements and verification of forecasts. J. Appl. Meteor. Climatol., 51, 16021617.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., P. Carlotti, R. K. Newsom, R. M. Banta, R. C. Foster, and J.-L. Redelsperger, 2004: The structure of the near-neutral atmospheric surface layer. J. Atmos. Sci., 61, 699714.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., and R. B. Wilhelmson, 1987: Numerical simulation of thunderstorm outflow dynamics. Part I: Outflow sensitivity experiments and turbulence dynamics. J. Atmos. Sci., 44, 11801210.

    • Search Google Scholar
    • Export Citation
  • Emeis, S., M. Harris, and R. M. Banta, 2007: Boundary-layer anemometry by optical remote sensing for wind energy applications. Meteor. Z., 16, 337347.

    • Search Google Scholar
    • Export Citation
  • Fast, J. D., and L. S. Darby, 2004: An evaluation of mesoscale model predictions of down-valley and canyon flows and their consequences using Doppler lidar measurements. J. Appl. Meteor., 43, 420436.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., and J. C. Weil, 2010: Whither the stable boundary layer? A shift in the research agenda. Bull. Amer. Meteor. Soc., 91, 14751484.

    • Search Google Scholar
    • Export Citation
  • Gohm, A., G. J. Mayr, L. S. Darby, and R. M. Banta, 2010: Evolution and structure of a cold front in an Alpine valley as revealed by a Doppler lidar. Quart. J. Royal Meteor. Soc., Part B, 136, 962977.

    • Search Google Scholar
    • Export Citation
  • Grund, C. J., R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, 2001: High-resolution Doppler lidar for boundary layer and cloud research. J. Atmos. Oceanic Technol., 18, 376393.

    • Search Google Scholar
    • Export Citation
  • Hall, F. F., R. M. Huffaker, R. M. Hardesty, M. E. Jackson, T. R. Lawrence, M. J. Post, R. A. Richter, and B. F. Weber, 1984: Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar. Appl. Opt., 23, 25032506.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 199205.

  • Jiang, X., N.-G. Lau, I. M. Held, and J. J. Ploshay, 2007: Mechanisms of the Great Plains low-level jet as simulated in an AGCM. J. Atmos. Sci., 64, 532547.

    • Search Google Scholar
    • Export Citation
  • Kindler, D., A. Oldroyd, A. MacAskill, and D. Finch, 2007: An eight month test campaign of the Qinetiq ZephIR system: Preliminary results. Meteor. Z., 16, 479489.

    • Search Google Scholar
    • Export Citation
  • Kelley, N. D., 2011: Turbulence-turbine interaction: The basis for the development of the TurbSim stochastic simulator. NREL Tech. Rep. NREL/TP-5000-52353, 299 pp.

    • Search Google Scholar
    • Export Citation
  • Kelley, N. D., M. Shirazi, D. Jager, S. Wilde, J. Adams, M. Buhl, P. Sullivan, and E. Patton, 2004: Lamar low-level jet project—Interim report. NREL Tech. Rep. NREL/TP-500- 34593, 216 pp.

    • Search Google Scholar
    • Export Citation
  • Kelley, N. D., B. J. Jonkman, G. N. Scott, and Y. L. Pichugina, 2007: Comparing pulsed Doppler lidar with sodar and direct measurements for wind assessment. Proc. Windpower Conf., Los Angeles, CA, American Wind Energy Association, NREL/CP-500-417, 22 pp.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and Coauthors, 2000: Land–atmosphere interaction research, early results, and opportunities in the Walnut River Watershed in southeast Kansas: CASES and ABLE. Bull. Amer. Meteor. Soc., 81, 757779.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R., and D. Atlas, 1961: Precipitation motion by pulse Doppler radar. Preprints, Ninth Weather Radar Meteorology Conf., Kansas City, MO, Amer. Meteor. Soc., 218223.

    • Search Google Scholar
    • Export Citation
  • Lundquist, J. K., 2003: Intermittent and elliptical inertial oscillations in the atmospheric boundary layer. J. Atmos. Sci., 60, 26612673.

    • Search Google Scholar
    • Export Citation
  • Mahoney, W. P., and Coauthors, 2012: A wind power forecasting system to optimize grid integration. IEEE Trans. Sustainable Energy, 3, 670682.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1998: Stratified atmospheric boundary layers and breakdown of models. Theor. Comput. Fluid Dyn., 11, 263280.

  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90, 375396.

  • Mahrt, L., and D. Vickers, 2006: Extremely weak mixing in stable conditions. Bound.-Layer Meteor., 119, 1939.

  • Mann, J., A. Peña, F. Bingöl, R. Wagner, and M. S. Courtney, 2010: Lidar scanning of momentum flux in and above the atmospheric surface layer. J. Atmos. Oceanic Technol., 27, 959976.

    • Search Google Scholar
    • Export Citation
  • Marquis, M., J. Wilczak, M. Ahlstrom, J. Sharp, A. Stern, J. C. Smith, and S. Calvert, 2011: Forecasting the wind to reach significant penetration levels of wind energy. Bull. Amer. Meteor. Soc., 92, 11591171.

    • Search Google Scholar
    • Export Citation
  • Mayor, S. D., 2011: Observations of seven atmospheric density current fronts in Dixon, California. Mon. Wea. Rev., 139, 13381351.

  • McNider, R. T., and R. A. Pielke, 1981: Diurnal boundary layer development over sloping terrain. J. Atmos. Sci., 38, 21982212.

  • Newsom, R. K., and R. M. Banta, 2003: Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99. J. Atmos. Sci., 60, 1633.

    • Search Google Scholar
    • Export Citation
  • NRC, 2009: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. National Academies Press, 234 pp.

  • Parish, T. R., and L. D. Oolman, 2010: On the role of sloping terrain in the forcing of the Great Plains low-level jet. J. Atmos. Sci., 67, 26902699.

    • Search Google Scholar
    • Export Citation
  • Parks, K., Y.-H. Wan, G. Wiener, and Y. Liu, 2011: Wind energy forecasting: A collaboration on the National Center for Atmospheric Research (NCAR) and Xcel Energy. NREL Subcontract Rep. NREL/SR-5500-52233, 29 pp.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., M. A. Shapiro, R. M. Hardesty, R. J. Zamora, and J. M. Intrieri, 1991: The fine-scale structure of a west Texas dryline. Mon. Wea. Rev., 119, 12421258.

    • Search Google Scholar
    • Export Citation
  • Peña, A., C. B. Hasager, S.-E. Gryning, M. Courtney, I. Antoniou, and T. Mikkelsen, 2008: Measurements and modelling of the wind speed profile in the marine atmospheric boundary layer. Bound.-Layer Meteor., 129, 479495.

    • Search Google Scholar
    • Export Citation
  • Peña, A., C. B. Hasager, S.-E. Gryning, M. Courtney, I. Antoniou, and T. Mikkelsen, 2009: Offshore wind profiling using light detection and ranging measurements. Wind Energy, 12, 105124, doi:1002/we.283.

    • Search Google Scholar
    • Export Citation
  • Pichugina, Y. L., and R. M. Banta, 2010: Stable boundary layer depth from high-resolution measurements of the mean wind profile. J. Appl. Meteor. Climatol., 49, 2035.

    • Search Google Scholar
    • Export Citation
  • Pichugina, Y. L., S. C. Tucker, R. M. Banta, W. A. Brewer, N. D. Kelley, B. J. Jonkman, R. K. Newsom, 2008: Horizontal-velocity and variance measurements in the stable boundary layer using Doppler lidar: Sensitivity to averaging procedures. J. Atmos. Oceanic Technol., 25, 13071327.

    • Search Google Scholar
    • Export Citation
  • Pichugina, Y. L., S. C. Tucker, W. A. Brewer, S. P. Sandberg, and R. M. Hardesty, 2012: Doppler lidar–based wind-profile measurement system for offshore wind-energy and other marine boundary layer applications. J. Appl. Meteor. Climatol., 51, 327349.

    • Search Google Scholar
    • Export Citation
  • Post, M. J., and W. D. Neff, 1986: Doppler lidar measurements of winds in a narrow mountain valley. Bull. Amer. Meteor. Soc., 67, 274281.

    • Search Google Scholar
    • Export Citation
  • Poulos, G., and S. P. Burns, 2003: An evaluation of bulk Ri-based surface layer flux formulas for stable and very stable conditions with intermittent turbulence. J. Atmos. Sci., 60, 25232537.

    • Search Google Scholar
    • Export Citation
  • Poulos, G., and Coauthors, 2002: CASES-99: A comprehensive investigation of the stable nocturnal boundary layer. Bull. Amer. Meteor. Soc., 83, 555581.

    • Search Google Scholar
    • Export Citation
  • Schreck, S., J. K. Lundquist, and W. Shaw, 2008: U.S. Department of Energy Workshop Report: Research needs for wind resource characterization. NREL Tech. Rep. NREL/TP-500-43521, 116 pp.

    • Search Google Scholar
    • Export Citation
  • Seaman, N., 2000: Meteorological modeling for air-quality assessments. Atmos. Environ., 34, 22312259.

  • Shapiro, A. M., and E. Federovich, 2009: Nocturnal low-level jet over a shallow slope. Acta Geophys., 57, 950980.

  • Shaw, W. J., J. K. Lundquist, and S. J. Schreck, 2009: Research needs for wind resource characterization. Bull. Amer. Meteor. Soc., 90, 535538.

    • Search Google Scholar
    • Export Citation
  • Smedman, A.-S., M. Tjernström, and U. Högström, 1993: Analysis of the turbulence structure of a marine low-level jet. Bound.-Layer Meteor., 66, 105126.

    • Search Google Scholar
    • Export Citation
  • Smedman, A.-S., H. Bergström, and B. Grisogano, 1997: Evolution of stable internal boundary layers over a cold sea. J. Geophys. Res., 102(C1), 10911099.

    • Search Google Scholar
    • Export Citation
  • Smith, D. A., M. Harris, A. S. Coffey, T. Mikkelsen, H. E. Jørgensen, J. Mann, and R. Danielian, 2006: Wind lidar evaluation at the Danish wind test site in Høvsøre. Wind Energy, 9, 8793.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 2010: Gravity wave effects on wind farm efficiency. Wind Energy, 13, 449458.

  • Steeneveld, G. J., B. J. H. van de Wiel, and A. A. M. Holtslag, 2007: Diagnostic equations for the stable boundary layer height: Evaluation and dimensional analysis. J. Appl. Meteor. Climatatol., 46, 212225.

    • Search Google Scholar
    • Export Citation
  • Storm, B., J. Dudhia, S. Basu, A. Swift, and I. Giammanco, 2009: Evaluation of the Weather Research and Forecasting model on forecasting low-level jets: Implications for wind energy. Wind Energy, 12, 8190, doi:10.1002/we.288.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Coauthors, 2002: Intermittent turbulence associated with a density current passage in the stable boundary layer. Bound.-Layer Meteor., 105, 199219.

    • Search Google Scholar
    • Export Citation
  • Sun, J., L. Mahrt, R. M. Banta, and Y. L. Pichugina, 2012: Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99. J. Atmos. Sci., 69, 338351.

    • Search Google Scholar
    • Export Citation
  • Tucker, S. C., W. A. Brewer, R. M. Banta, C. J. Senff, S. P. Sandberg, D. Law, A. M. Weickmann, and R. M. Hardesty, 2009: Doppler lidar estimation of mixing height using turbulence, shear, and aerosol profiles. J. Atmos. Oceanic Technol., 26, 673688.

    • Search Google Scholar
    • Export Citation
  • Tucker, S. C., and Coauthors, 2010: Relationships of coastal nocturnal boundary layer winds and turbulence to Houston ozone concentrations during TexAQS 2006. J. Geophys. Res., 115, D10304, doi:10.1029/2009JD013169.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. J. Mahrt, 2003: The cospectral gap and turbulent flux calculations. J. Atmos. Oceanic Technol., 20, 660672.

  • Vickers, D., and L. J. Mahrt, 2006: A solution for flux contamination by mesoscale motions with very weak turbulence. Bound.-Layer Meteor., 118, 431447.

    • Search Google Scholar
    • Export Citation
  • Wagner, R., I. Antoniou, S. M. Pedersen, M. S. Courtney, and H. E. Jorgensen, 2009: The influence of the wind speed profile on wind turbine performance measurements. Wind Energy, 12, 348362.

    • Search Google Scholar
    • Export Citation
  • Wagner, R., M. Courtney, J. Gottschall, and P. Lindelöw, 2011: Accounting for the speed shear in wind turbine power performance measurement. Wind Energy, 14, 9931004.

    • Search Google Scholar
    • Export Citation
  • Wexler, H., 1961: A boundary layer interpretation of the low level jet. Tellus, 13, 368378.

  • Wulfmeyer, V. O., M. Randall, A. Brewer, and R. M. Hardesty, 2000: 2-μm Doppler lidar transmitter with high frequency stability and low chirp. Opt. Lett., 25, 12281230.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., and J. D. Fast, 2003: An evaluation of the MM5, RAMS, and Meso-Eta models at subkilometer resolution using field campaign data in the Salt Lake Valley. Mon. Wea. Rev., 131, 13011322.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., J. D. Fast, and X. Bian, 1996: A case study of the Great Plains low-level jet using wind profiler network data and a high-resolution mesoscale model. Mon. Wea. Rev., 124, 785806.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1115 390 21
PDF Downloads 660 111 8