Aerosols for Concentrating Solar Electricity Production Forecasts: Requirement Quantification and ECMWF/MACC Aerosol Forecast Assessment

Marion Schroedter-Homscheidt German Aerospace Center (DLR), Earth Observation Center, Oberpfaffenhofen, Germany

Search for other papers by Marion Schroedter-Homscheidt in
Current site
Google Scholar
PubMed
Close
,
Armel Oumbe Deutsches Zentrum für Luft- und Raumfahrt (DLR), Earth Observation Center, Oberpfaffenhofen, Germany

Search for other papers by Armel Oumbe in
Current site
Google Scholar
PubMed
Close
,
Angela Benedetti European Centre for Medium-Range Weather Forecasts, Data Assimilation Section, Reading, United Kingdom

Search for other papers by Angela Benedetti in
Current site
Google Scholar
PubMed
Close
, and
Jean-Jacques Morcrette European Centre for Medium-Range Weather Forecasts, Data Assimilation Section, Reading, United Kingdom

Search for other papers by Jean-Jacques Morcrette in
Current site
Google Scholar
PubMed
Close
Restricted access

The potential for transferring a larger share of our energy supply toward renewable energy is a widely discussed goal in society, economics, environment, and climate-related programs. For a larger share of electricity to come from fluctuating solar and wind energy-based electricity, production forecasts are required to ensure successful grid integration. Concentrating solar power holds the potential to make the fluctuating solar electricity a dispatchable resource by using both heat storage systems and solar production forecasts based on a reliable weather prediction. These solar technologies exploit the direct irradiance at the surface, which is a quantity very dependent on the aerosol extinction with values up to 100%. Results from present-day numerical weather forecasts are inadequate, as they generally use climatologies for dealing with aerosol extinction. Therefore, meteorological forecasts have to be extended by chemical weather forecasts. The paper aims at quantifying on a global scale the question of whether and where daily mean or hourly forecasts are required, or if persistence is sufficient in some regions. It assesses the performance of recently introduced NWP aerosol schemes by using the ECMWF/Monitoring Atmospheric Composition and Climate (MACC) forecast, which is a preparatory activity for the upcoming European Global Monitoring for Environment and Security (GMES) Atmosphere Service.

CURRENT AFFILIATION: Total New Energies, R&D–Concentrated Solar Technologies, Courbevoie, France

CORRESPONDING AUTHOR: Dr. Marion Schroedter-Homscheidt, German Aerospace Center (DLR), Earth Observation Center, 82234 Oberpfaffenhofen, Germany, E-mail: marion.schroedter-homscheidt@dlr.de

The potential for transferring a larger share of our energy supply toward renewable energy is a widely discussed goal in society, economics, environment, and climate-related programs. For a larger share of electricity to come from fluctuating solar and wind energy-based electricity, production forecasts are required to ensure successful grid integration. Concentrating solar power holds the potential to make the fluctuating solar electricity a dispatchable resource by using both heat storage systems and solar production forecasts based on a reliable weather prediction. These solar technologies exploit the direct irradiance at the surface, which is a quantity very dependent on the aerosol extinction with values up to 100%. Results from present-day numerical weather forecasts are inadequate, as they generally use climatologies for dealing with aerosol extinction. Therefore, meteorological forecasts have to be extended by chemical weather forecasts. The paper aims at quantifying on a global scale the question of whether and where daily mean or hourly forecasts are required, or if persistence is sufficient in some regions. It assesses the performance of recently introduced NWP aerosol schemes by using the ECMWF/Monitoring Atmospheric Composition and Climate (MACC) forecast, which is a preparatory activity for the upcoming European Global Monitoring for Environment and Security (GMES) Atmosphere Service.

CURRENT AFFILIATION: Total New Energies, R&D–Concentrated Solar Technologies, Courbevoie, France

CORRESPONDING AUTHOR: Dr. Marion Schroedter-Homscheidt, German Aerospace Center (DLR), Earth Observation Center, 82234 Oberpfaffenhofen, Germany, E-mail: marion.schroedter-homscheidt@dlr.de
Save
  • Benedetti, A., and Coauthors, 2009: Aerosol analysis and forecast in the European Centre for Medium- Range Weather Forecasts Integrated Forecast System: 2. Data assimilation. J. Geophys. Res., 114, D13205, doi:10.1029/2008JD011115.

    • Search Google Scholar
    • Export Citation
  • Beyer, H.-G., C. Costanzo, and D. Heinemann, 1996: Modifications of the Heliosat procedure for irradiance estimates from satellite images. Sol. Energy, 56, 207–212.

    • Search Google Scholar
    • Export Citation
  • Breitkreuz, H., M. Schroedter-Homscheidt, T. Holzer-Popp, and S. Dech, 2009: Short-range direct and diffuse irradiance forecasts for solar energy applications based on aerosol chemical transport and numerical weather modeling. J. Appl. Meteor. Climatol., 48, 1766–1779.

    • Search Google Scholar
    • Export Citation
  • Cano, D., J. Monget, M. Albuisson, H. Guillard, N. Regas, and L. Wald, 1986: A method for the determination of the global solar radiation from meteorological satellite data. Sol. Energy, 37, 31–39.

    • Search Google Scholar
    • Export Citation
  • Ginoux, P., J. M. Prospero, T. E. Gill, N. C. Hsu, and M. Zhao, 2012: Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys., 50, RG3005, doi:10.1029/2012RG000388.

    • Search Google Scholar
    • Export Citation
  • Hess, M., P. Koepke, and I. Schult, 1998: Optical Properties of Aerosols and Clouds: The software package OPAC. Bull. Amer. Meteor. Soc., 79, 831–844.

    • Search Google Scholar
    • Export Citation
  • Holben, B. N., and Coauthors, 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 1–16.

    • Search Google Scholar
    • Export Citation
  • Hsu, N. C., S.-C. Tsay, M. King, and J. R. Herman, 2004: Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens., 42, 557–569.

    • Search Google Scholar
    • Export Citation
  • Hsu, N. C., S.-C. Tsay, M. King, and J. R. Herman, 2006: Deep Blue retrievals of Asian aerosol properties during ACE-Asia. IEEE Trans. Geosci. Remote Sens., 44, 3180–3195.

    • Search Google Scholar
    • Export Citation
  • Huneeus, N., and Coauthors, 2011: Global dust model intercomparison in AeroCom phase I. Atmos. Chem. Phys., 11, 7781–7816, doi:10.5194/acp-11-7781-2011.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., and Coauthors, cited 2010: TRNSYS 17: A Transient System Simulation Program. [Available online at http://sel.me.wisc.edu/trnsys.]

    • Search Google Scholar
    • Export Citation
  • Klinker, E., F. Rabier, G. Kelly, and J.-F. Mahfouf, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. III: Experimental results and diagnostics with operational configuration. Quart. J. Roy. Meteor. Soc., 126, 1191–1215.

    • Search Google Scholar
    • Export Citation
  • Kraas, B., R. Madlener, B. Pulvermüller, and M. Schroedter-Homscheidt, 2010: Viability of a concentrating solar power forecasting system for participation in the Spanish electricity market. Proc. SolarPaces 2010, Perpignan, France, IEA SolarPaces programme and CNRS-PROMES.

    • Search Google Scholar
    • Export Citation
  • Kraas, B., M. Schroedter-Homscheidt, R. Madlener, and B. Pulvermüller, 2011: Economic assessment of a concentrating solar power forecasting system for participation in the Spanish electricity market. Sol. Energy, in press.

    • Search Google Scholar
    • Export Citation
  • Kylling, A., and Coauthors, 2005: Spectral actinic flux in the lower troposphere: Measurement and 1-D simulations for cloudless, broken cloud and overcast situations. Atmos. Chem. Phys., 5, 1975–1997.

    • Search Google Scholar
    • Export Citation
  • Lara-Fanego, V., J.-A. Ruiz-Arias, D. Pozo-Vázquez, F. J. Santos-Alamillos, and J. Tovar-Pescador, 2012: Evaluation of the WRF model solar irradiance forecasts in Andalusia (southern Spain). Sol. Energy, 86, 2200–2217.

    • Search Google Scholar
    • Export Citation
  • Mahfouf, J.-F., and F. Rabier, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. II: Experimental results with improved physics. Quart. J. Roy. Meteor. Soc., 126, 1171–1190.

    • Search Google Scholar
    • Export Citation
  • Mayer, B., and A. Kylling, 2005: Technical note: The libRadtran software package for radiative transfer calculations—Description and examples of use. Atmos. Chem. Phys., 5, 1855–1877, doi:10.5194/acp-5-1855-2005.

    • Search Google Scholar
    • Export Citation
  • Ministerio de Industria, Turismo y Comercio, 2007: Real Decreto 661/2007, de 25 de Mayo, por el que se regula la actividad de producción de energía eléctrica en régimen especial. Boletín Oficial des Estado, No. 126, Agencia Estatal Boletín Oficial del Estado, 22 846–22 886. [Available online at www.boe.es/buscar/doc.php?id=BOE-A-2007-10556.]

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., and Coauthors, 2009: Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: Forward modeling. J. Geophys. Res., 114, D06206, doi:10.1029/2008JD011235.

    • Search Google Scholar
    • Export Citation
  • Morcrette, J.-J., A. Benedetti, L. Jones, J. W. Kaiser, M. Razinger, and M. Suttie, 2011: Prognostic aerosols in the ECMWF IFS: MACC vs GEMS aerosols. European Centre for Medium-Range Weather Forecasts Tech. Memo. 659, 32 pp. [Available online at www.ecmwf.int/publications/library/do/references/show?id=90354.]

    • Search Google Scholar
    • Export Citation
  • Pulvermüller, B., M. Schroedter-Homscheidt, B. Pape, J. Casado, and K.-J. Riffelmann, 2009: Analysis of the requirements for a CSP energy production forecast system. Proc. SolarPaces 2009, Berlin, Germany, German Aerospace Center.

    • Search Google Scholar
    • Export Citation
  • Rabier, F., H. Jbinen, E. Klinker, J.-F. Mahfouf, and A. Simmons, 2000: The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Quart. J. Roy. Meteor. Soc., 126, 1143–1170.

    • Search Google Scholar
    • Export Citation
  • Remer, L. A., and Coauthors, 2005: The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62, 947–973.

  • Rigollier, C., M. Lefèvre, and L. Wald, 2004: The method Heliosat-2 for deriving shortwave solar radiation from satellite images. Sol. Energy, 77, 159–169.

    • Search Google Scholar
    • Export Citation
  • Shiobara, M., and S. Asano, 1994: Estimation of cirrus optical thickness from sun photometer measurements. J. Appl. Meteor., 33, 672–681.

    • Search Google Scholar
    • Export Citation
  • Stamnes, K., S.-C. Tsay, W. Wiscombe, and K. Jayaweera, 1988: Numerically stable algorithm for discrete–ordinate–method radiative transfer in multiple scattering and emitting layered media. Appl. Opt., 27, 2502–2509.

    • Search Google Scholar
    • Export Citation
  • Thomalla, E., P. Köpke, H. Müller, and H. Quenzel, 1983: Circumsolar radiation calculated for various atmospheric conditions. Sol. Energy, 30, 575–587.

    • Search Google Scholar
    • Export Citation
  • Wagner, M. J., and P. Gilman, 2011: Technical manual for the SAM Physical Trough Model. NREL Tech. Rep. NREL/TP-5500-51825, 124 pp. [Available online at https://sam.nrel.gov/webfm_send/106.]

    • Search Google Scholar
    • Export Citation
  • Wittmann, M., H. Breitkreuz, M. Schroedter-Homscheidt, and M. Eck, 2008: Case studies on the use of solar irradiance forecast for optimized operation strategies of solar thermal power plants. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 1, 18–27, doi:10.1109/JSTARS.2008.2001152.

    • Search Google Scholar
    • Export Citation
  • WMO, 2010: Measurement of radiation. WMO guide to meteorological instruments and methods of observation, WMO-No. 8., I.7-1–I.7-41. [Available online at www.wmo.int/pages/prog/www/IMOP/CIMO-Guide.html.]

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 638 211 34
PDF Downloads 305 116 9