Use of NWP for Nowcasting Convective Precipitation: Recent Progress and Challenges

Juanzhen Sun National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Juanzhen Sun in
Current site
Google Scholar
PubMed
Close
,
Ming Xue Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Ming Xue in
Current site
Google Scholar
PubMed
Close
,
James W. Wilson National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by James W. Wilson in
Current site
Google Scholar
PubMed
Close
,
Isztar Zawadzki Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, Canada

Search for other papers by Isztar Zawadzki in
Current site
Google Scholar
PubMed
Close
,
Sue P. Ballard Met Office, University of Reading, Reading, United Kingdom

Search for other papers by Sue P. Ballard in
Current site
Google Scholar
PubMed
Close
,
Jeanette Onvlee-Hooimeyer Royal Netherlands Meteorological Institute, De Bilt, Netherlands

Search for other papers by Jeanette Onvlee-Hooimeyer in
Current site
Google Scholar
PubMed
Close
,
Paul Joe Environment Canada, Toronto, Ontario, Canada

Search for other papers by Paul Joe in
Current site
Google Scholar
PubMed
Close
,
Dale M. Barker Met Office, Exeter, United Kingdom

Search for other papers by Dale M. Barker in
Current site
Google Scholar
PubMed
Close
,
Ping-Wah Li Hong Kong Observatory, Kowloon, Hong Kong

Search for other papers by Ping-Wah Li in
Current site
Google Scholar
PubMed
Close
,
Brian Golding Met Office, Exeter, United Kingdom

Search for other papers by Brian Golding in
Current site
Google Scholar
PubMed
Close
,
Mei Xu National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Mei Xu in
Current site
Google Scholar
PubMed
Close
, and
James Pinto National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by James Pinto in
Current site
Google Scholar
PubMed
Close
Restricted access

Traditionally, the nowcasting of precipitation was conducted to a large extent by means of extrapolation of observations, especially of radar ref lectivity. In recent years, the blending of traditional extrapolation-based techniques with high-resolution numerical weather prediction (NWP) is gaining popularity in the nowcasting community. The increased need of NWP products in nowcasting applications poses great challenges to the NWP community because the nowcasting application of high-resolution NWP has higher requirements on the quality and content of the initial conditions compared to longer-range NWP. Considerable progress has been made in the use of NWP for nowcasting thanks to the increase in computational resources, advancement of high-resolution data assimilation techniques, and improvement of convective-permitting numerical modeling. This paper summarizes the recent progress and discusses some of the challenges for future advancement.

CORRESPONDING AUTHOR: Juanzhen Sun, NCAR, P.O. Box 3000, Boulder, CO 80307, E-mail: sunj@ucar.edu

Traditionally, the nowcasting of precipitation was conducted to a large extent by means of extrapolation of observations, especially of radar ref lectivity. In recent years, the blending of traditional extrapolation-based techniques with high-resolution numerical weather prediction (NWP) is gaining popularity in the nowcasting community. The increased need of NWP products in nowcasting applications poses great challenges to the NWP community because the nowcasting application of high-resolution NWP has higher requirements on the quality and content of the initial conditions compared to longer-range NWP. Considerable progress has been made in the use of NWP for nowcasting thanks to the increase in computational resources, advancement of high-resolution data assimilation techniques, and improvement of convective-permitting numerical modeling. This paper summarizes the recent progress and discusses some of the challenges for future advancement.

CORRESPONDING AUTHOR: Juanzhen Sun, NCAR, P.O. Box 3000, Boulder, CO 80307, E-mail: sunj@ucar.edu
Save
  • Aksoy, A., D. C. Dowell, and C. Snyder, 2010: A multi-case comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part II: Short-range ensemble forecasts. Mon. Wea. Rev., 138, 12731292.

    • Search Google Scholar
    • Export Citation
  • Albers, S. C., J. A. McGinley, D. A. Birkenheuer, and J. R. Smart, 1996: The Local Analysis and Prediction System (LAPS): Analysis of clouds, precipitation and temperature. Wea. Forecasting, 11, 273287.

    • Search Google Scholar
    • Export Citation
  • Alexander, C., and Coauthors, cited 2012: Evaluation of the 3-km high resolution rapid refresh (HRRR) as nowcast guidance. [Available online at http://wmo-workshop-on-the-use-of-nwp-for-nowcasting.wikispaces.com/file/view/Alexander-WMONowcast2011_Final.pdf.]

    • Search Google Scholar
    • Export Citation
  • Austin, G. L., P. Dionne, and M. Roch, 1987: On the interaction between radar and satellite image nowcasting systems and mesoscale numerical models. Proc. Mesoscale Analysis and Forecasting, Vancouver, BC, Canada, European Space Agency, 225228.

    • Search Google Scholar
    • Export Citation
  • Ballard, S. P., Z. Li, D. Simonin, H. Buttery, C. Charlton-Perez, N. Gaussiat, and L. Hawkness-Smith, 2012a: Use of radar data in NWP-based nowcasting in the Met Office. Weather Radar and Hydrology, R. J. Moore, S. J. Cole, and A. J. Illingworth , Eds., IAHS Publ. 351, 336341.

    • Search Google Scholar
    • Export Citation
  • Ballard, S. P., and Coauthors, 2012b: Convective scale data assimilation and nowcasting. Proc. Seminar on Data Assimilation for Atmosphere and Ocean, Shinfield Park, Reading, United Kingdom, ECMWF, 265300.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation–forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518.

  • Browning, K. A., 1980: Local weather forecasting. Proc. Roy. Soc. London, A371, 179211.

  • Carbone, R. E., J. D. Tuttle, D. A. Ahijevych, and S. B. Trier, 2002: Inferences of predictability associated with warm season precipitation episodes. J. Atmos. Sci., 59, 20332056.

    • Search Google Scholar
    • Export Citation
  • Caumont, O., V. Ducrocq, E. Wattrelot, G. Jaubert, and S. Pradier-Vabre, 2009: 1D+3DVar assimilation of radar reflectivity data: A proof of concept. Tellus, 62A, 173187.

    • Search Google Scholar
    • Export Citation
  • Clark, A. J., W. A. Gallus Jr., M. Xue, and F. Kong, 2009: A comparison of precipitation forecast skill between small convection-permitting and large convection-parameterizing ensembles. Wea. Forecasting, 24, 11211140.

    • Search Google Scholar
    • Export Citation
  • Dabberdt, W. F., and Coauthors, 2005: Multifunctional mesoscale observing networks. Bull. Amer. Meteor. Soc., 86, 961982.

  • Dawson, D. T., II, L. J. Wicker, E. R. Mansell, and R. L. Tanamachi, 2011: Impact of the environmental low-level wind profile on ensemble forecasts of the 4 May 2007 Greensburg, Kansas, tornadic storm and associated mesocyclones. Mon. Wea. Rev., 140, 696716.

    • Search Google Scholar
    • Export Citation
  • Dixon, M., and G. Wiener, 1993: TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A radar-based methodology. J. Atmos. Oceanic Technol., 10, 785797.

    • Search Google Scholar
    • Export Citation
  • Dixon, M., Z. Li, H. Lean, N. Roberts, and S. Ballard, 2009: Impact of data assimilation on forecasting convection over the United Kingdom using a high-resolution version of the Met Office Unified Model. Mon. Wea. Rev., 137, 15621584.

    • Search Google Scholar
    • Export Citation
  • Done, J., C. A. Davis, and M. L. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmos. Sci. Lett., 5, 110117.

    • Search Google Scholar
    • Export Citation
  • Dong, J., and M. Xue, 2012: Assimilation of radial velocity and reflectivity data from coastal WSR-88D radars using ensemble Kalman filter for the analysis and forecast of landfalling Hurricane Ike (2008). Quart. J. Roy. Meteor. Soc., 139, 467487, doi:10.1002/qj.1970.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., III, 1986: Short-range forecasting. Mesoscale Meteorology and Forecasting, P. Ray , Ed., Amer. Meteor. Soc., 689719.

  • Dowell, D. C., and L. J. Wicker, 2009: Additive noise for storm-scale ensemble data assimilation. J. Atmos. Oceanic Technol., 26, 911927.

    • Search Google Scholar
    • Export Citation
  • Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 19822005.

    • Search Google Scholar
    • Export Citation
  • Droegemeier, K. K., 1990: Toward a science of stormscale prediction. Preprints, 16th Conf. on Severe Local Storms, Kananaskis Park, AB, Canada, Amer. Meteor. Soc., 256262.

    • Search Google Scholar
    • Export Citation
  • Evans, J. E., and E. R. Ducot, 2006: Corridor Integrated Weather System. Lincoln Lab. J., 16, 5980.

  • Evensen, G., 1992: Using the extended Kalman filter with a multi-layer quasi-geostrophic ocean model. J. Geophys. Res., 97 (C11), 17 90517 924.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99 (C5), 10 14310 162.

    • Search Google Scholar
    • Export Citation
  • Gao, J.-D., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 21282142.

    • Search Google Scholar
    • Export Citation
  • Gao, J.-D., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457469.

    • Search Google Scholar
    • Export Citation
  • Ge, G., J. Gao, and M. Xue, 2013: Impact of assimilating measurements of different state variables with a simulated supercell storm and three-dimensional variational method. Mon. Wea. Rev., 141, 27592777.

    • Search Google Scholar
    • Export Citation
  • Germann, U., I. Zawadzki, and B. Turner, 2006: Predictability of precipitation from continental radar images. Part IV: Limits to prediction. J. Atmos. Sci., 63, 20922108.

    • Search Google Scholar
    • Export Citation
  • Gilleland, E., D. Ahijevych, B. G. Brown, B. Casati, and E. E. Ebert, 2009: Intercomparison of spatial forecast verification methods. Wea. Forecasting, 24, 14161430.

    • Search Google Scholar
    • Export Citation
  • Golding, B. W., 1998: Nimrod: A system for generating automated very short range forecasts. Meteor. Appl., 5, 116.

  • Hogan, R. J., E. J. O'Connor, and A. J. Illingworth, 2009: Verification of cloud-fraction forecasts. Quart. J. Roy. Meteor. Soc., 135, 14941511.

    • Search Google Scholar
    • Export Citation
  • Honda, Y., M. Nishijima, K. Koizumi, Y. Ohta, K. Tamiya, T. Kawabata, and T. Tsuyuki, 2005: A preoperational variational data assimilation system for a non-hydrostatic model at the Japan Meteorological Agency: Formulation and preliminary results. Quart. J. Roy. Meteor. Soc., 131, 34653475.

    • Search Google Scholar
    • Export Citation
  • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796811.

    • Search Google Scholar
    • Export Citation
  • Hu, M., and M. Xue, 2007: Impact of configurations of rapid intermittent assimilation of WSR-88D radar data for the 8 May 2003 Oklahoma City tornadic thunderstorm case. Mon. Wea. Rev., 135, 507525.

    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, and K. Brewster, 2006a: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of Fort Worth tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675698.

    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, J. Gao, and K. Brewster, 2006b: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of Fort Worth tornadic thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR. Mon. Wea. Rev., 134, 699721.

    • Search Google Scholar
    • Export Citation
  • Huang, X.-Y., M. Chen, W. Wang, J.-W. Kim, W. Skamarock, and T. Henderson, 2007: Development of digital filter initialization for WRF and its implementation at IUM. Preprints, Eighth Annual WRF User's Workshop, Boulder, CO, NCAR, P5.4. [Available online at www.mmm.ucar.edu/wrf/users|/workshops/WS2007/abstracts/p5-4_Huang.pdf.]

    • Search Google Scholar
    • Export Citation
  • Isaac, G. A., and Coauthors, 2014: Science of nowcasting Olympic weather for Vancouver 2010 (SNOW-10): A World Weather Research Programme project. J. Pure Appl. Geophys., 171, 124, doi:10.1007/s00024-012-0579-0.

    • Search Google Scholar
    • Export Citation
  • Jones, C. D., and B. Macpherson, 1997: A latent heat nudging scheme for the assimilation of precipitation data into an operational mesoscale model. Meteor. Appl., 4, 269277.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and G. Zhang, 2010: Simultaneous estimation of microphysical parameters and atmospheric state using simulated polarimetric radar data and an ensemble Kalman filter in the presence of an observation operator error. Mon. Wea. Rev., 138, 539562.

    • Search Google Scholar
    • Export Citation
  • Jung, Y., M. Xue, and M. Tong, 2012: Ensemble Kalman filter analyses of the 29–30 May 2004 Oklahoma tornadic thunderstorm using one- and two-moment bulk microphysics schemes, with verification against polarimetric data. Mon. Wea. Rev., 140, 14571475.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., S. J. Weiss, J. J. Levit, M. E. Baldwin, and D. R. Bright, 2006: Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004. Wea. Forecasting, 21, 167181.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., and Coauthors, 2010: Assessing advances in the assimilation of radar data within a collaborative forecasting-research environment. Wea. Forecasting, 25, 15101521.

    • Search Google Scholar
    • Export Citation
  • Kawabata, T., H. Seko, K. Saito, T. Kuroda, K. Tamiya, T. Tsuyuki, Y. Honda, and Y. Wakazuki, 2007: An assimilation and forecasting experiment of the Nerima heavy rainfall with a cloud-resolving nonhydrostatic 4-dimensional variational data assimilation system. J. Meteor. Soc. Japan, 85, 255276.

    • Search Google Scholar
    • Export Citation
  • Kawabata, T., T. Kuroda, H. Seko, and K. Saito, 2011: A cloud-resolving 4DVAR assimilation experiment for a local heavy rainfall event in the Tokyo metropolitan area. Mon. Wea. Rev., 139, 19111931.

    • Search Google Scholar
    • Export Citation
  • Koizumi, K., Y. Ishikawa, and T. Tsuyuki, 2005: Assimilation of precipitation data to the JMA mesoscale model with a four-dimensional variational method and its impact on precipitation forecasts. Sci. Online Lett. Atmos., 1, 4548.

    • Search Google Scholar
    • Export Citation
  • Kong, F., and Coauthors, 2008: Real-time storm-scale ensemble forecast 2008 spring experiment. Extended Abstracts, 24th Conf. Several Local Storms, Savannah, GA, Amer. Meteor. Soc., 12.3. [Available online at https://ams.confex.com/ams/24SLS/techprogram/paper_141827.htm.]

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., J. Xue, H. S. Bedi, K. Ingles, and D. Oosterhof, 1991: Physical initialization for numerical weather prediction over the tropics. Tellus, 43A, 5381.

    • Search Google Scholar
    • Export Citation
  • Lei, T., M. Xue, and T. Yu, 2009: Multi-scale analysis and prediction of the 8 May 2003 Oklahoma City tornadic supercell storm assimilating radar and surface network data using EnKF. Extended Abstracts, 13th Conf. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, Phoenix, AZ, Amer. Meteor. Soc., 6.4. [Available online at https://ams.confex.com/ams/89annual/techprogram/paper_150404.htm.]

    • Search Google Scholar
    • Export Citation
  • Li, Y., X. Wang, and M. Xue, 2012: Assimilation of radar radial velocity data with the WRF ensemble-3DVAR hybrid system for the prediction of Hurricane Ike (2008). Mon. Wea. Rev., 140, 35073524.

    • Search Google Scholar
    • Export Citation
  • Lilly, D. K., 1990: Numerical prediction of thunderstorms— Has its time come? Quart. J. Roy. Meteor. Soc., 116, 779798.

  • Liu, Y., and Coauthors, 2008: The operational meso-gamma-scale analysis and forecast system of the U.S. Army Test and Evaluation Command. Part I: Overview of the modeling system, the forecast products, and how the products are used. J. Appl. Meteor. Climatol., 47, 10771092.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A., 2003: The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Quart. J. Roy. Meteor. Soc., 129, 31833204.

    • Search Google Scholar
    • Export Citation
  • Lorenz, E. N., 1969: The predictability of a flow which possesses many scales of motion. Tellus, 21, 289307.

  • Lynch P., and X. Huang, 1992: Initialization of the HIRLAM Model Using a Digital Filter. Mon. Wea. Rev., 120, 10191033.

  • Mueller, C. K., J. W. Wilson, and N. A. Crook, 1993: The utility of sounding and mesonet data to nowcast thunderstorm initiation. Wea. Forecasting, 8, 132146.

    • Search Google Scholar
    • Export Citation
  • Pinto, J., W. Dupree, S. Weygandt, M. Wolfson, S. Benjamin, and M. Steiner, 2010: Advances in the Collaborative Storm Prediction for Aviation (CoSPA). Preprints, 14th Conf. Aviation, Range, and Aerospace Meteorology, Atlanta, GA, Amer. Meteor. Soc., J11.2. [Available online at https://ams.confex.com/ams/90annual/webprogram/Paper163811.html.]

    • Search Google Scholar
    • Export Citation
  • Qiu, C.-J., and Q. Xu, 1992: A simple adjoint method of wind analysis for single-Doppler data. J. Atmos. Oceanic Technol., 9, 588598.

    • Search Google Scholar
    • Export Citation
  • Radhakrishna, B., I. Zawadzki, and F. Fabry, 2012: Predictability of precipitation from continental radar images. Part V: Growth and decay. J. Atmos. Sci., 69, 33363349.

    • Search Google Scholar
    • Export Citation
  • Rennie, S. J., S. L. Dance, A. J. Illingworth, S. P. Ballard, and D. Simonin, 2011: 3D-Var assimilation of insect-derived Doppler radar radial winds in convective cases using a high-resolution model. Mon. Wea. Rev., 139, 11481163.

    • Search Google Scholar
    • Export Citation
  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 7897.

    • Search Google Scholar
    • Export Citation
  • Roberts, R. D., A. R. S. Anderson, E. Nelson, B. G. Brown, J. W. Wilson, M. Pocernich, and T. Saxen, 2012: Impacts of forecaster involvement on convective storm initiation and evolution nowcasting. Wea. Forecasting, 27, 10611089.

    • Search Google Scholar
    • Export Citation
  • Schenkman, A., M. Xue, A. Shapiro, K. Brewster, and J. Gao, 2011a: Impact of CASA radar and Oklahoma mesonet data assimilation on the analysis and prediction of tornadic mesovortices in a MCS. Mon. Wea. Rev., 139, 34223445.

    • Search Google Scholar
    • Export Citation
  • Schenkman, A., M. Xue, A. Shapiro, K. Brewster, and J. Gao, 2011b: The analysis and prediction of the 8–9 May 2007 Oklahoma tornadic mesoscale convective system by assimilating WSR-88D and CASA radar data using 3DVAR. Mon. Wea. Rev., 139, 224246.

    • Search Google Scholar
    • Export Citation
  • Shapiro, A., S. Ellis, and J. Shaw, 1995: Single-Doppler radar retrievals with Phoenix II data: Clear air and microburst wind retrievals in the planetary boundary layer. J. Atmos. Sci., 52, 12651287.

    • Search Google Scholar
    • Export Citation
  • Snook, N., M. Xue, and J. Jung, 2011: Analysis of a tornadic mesocale convective vortex based on ensemble Kalman filter assimilation of CASA X-band and WSR-88D radar data. Mon. Wea. Rev., 139, 34463468.

    • Search Google Scholar
    • Export Citation
  • Snook, N., M. Xue, and Y. Jung, 2012: Ensemble probabilistic forecasts of a tornadic mesoscale convective system from ensemble Kalman filter analyses using WSR-88D and CASA radar data. Mon. Wea. Rev., 140, 21262146.

    • Search Google Scholar
    • Export Citation
  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 16631677.

    • Search Google Scholar
    • Export Citation
  • Sokol, Z., and P. Zacharov, 2012: Nowcasting of precipitation by an NWP model using assimilation of extrapolated radar reflectivity. Quart. J. Roy. Meteor. Soc., 138, 10721082.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2009: Convective-scale warn-on-forecast system: A vision for 2020. Bull. Amer. Meteor. Soc., 90, 14871499.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., and Coauthors, 2012: Progress and challenges with warn-on-forecast. Atmos. Res., 123, 216.

  • Stephan, K., S. Klink, and C. Schraff, 2008: Assimilation of radar derived rain rates into the convective scale model COSMO-DE at DWD. Quart. J. Roy. Meteor. Soc., 134, 13151326.

    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., N. A. Crook, J. Sun, Q. Xiao, and D. Barker, 2009: Assimilation of Doppler radar data with WRF 3DVAR: Evaluation of its potential benefits to quantitative precipitation forecasting through observing system simulation experiments. Mon. Wea. Rev., 137, 40114029.

    • Search Google Scholar
    • Export Citation
  • Sun, J., 2005: Initialization and numerical forecasting of a supercell storm observed during STEPS. Mon. Wea. Rev., 133, 793813.

  • Sun, J., and N. A. Crook, 1994: Wind and thermodynamic retrieval from single-Doppler radar measurements of a gust front observed during Phoenix II. Mon. Wea. Rev., 122, 10751091.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 16421661.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835852.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Y. Zhang, 2008: Assimilation of multiple WSR_88D radar observations and prediction of a squall line observed during IHOP. Mon. Wea. Rev., 136, 23642388.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and H. Wang, 2013: Radar data assimilation with WRF 4D-Var. Part II: Comparison with 3D-Var for a squall line over the U.S. Great Plains. Mon. Wea. Rev., 141, 22452264.

    • Search Google Scholar
    • Export Citation
  • Sun, J., D. W. Flicker, and D. K. Lilly, 1991: Recovery of three-dimensional wind and temperature fields from simulated single-Doppler radar data. J. Atmos. Sci., 48, 876890.

    • Search Google Scholar
    • Export Citation
  • Sun, J., M. Chen, and Y. Wang, 2010: A frequent-updating analysis system based on radar, surface, and mesoscale model data for the Beijing 2008 forecast demonstration project. Wea. Forecasting, 25, 17151735.

    • Search Google Scholar
    • Export Citation
  • Sun, J., S. B. Trier, Q. Xiao, M. L. Weisman, H. Wang, Z. Ying, M. Xu, and Y. Zhang, 2012: Sensitivity of 0–12-h warm-season precipitation forecasts over the central United States to model initialization. Wea. Forecasting, 27, 832855.

    • Search Google Scholar
    • Export Citation
  • Surcel, M., M. Berenguer, and I. Zawadzki, 2010: The diurnal cycle of precipitation from continental radar mosaics and numerical weather prediction models. Part I: Methodology and seasonal comparison. Mon. Wea. Rev., 138, 30843106.

    • Search Google Scholar
    • Export Citation
  • Tong, M., 2006: Ensemble Kalman filter assimilation of Doppler radar data for the initialization and prediction of convective storms. Ph.D. dissertation, School of Meteorology, University of Oklahoma, 243 pp.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 17891807.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008a: Simultaneous estimation of microphysical parameters and atmospheric state with radar data and ensemble square root Kalman filter. Part I: Sensitivity analysis and parameter identifiability. Mon. Wea. Rev., 136, 16301648.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008b: Simultaneous estimation of microphysical parameters and atmospheric state with radar data and ensemble square root Kalman filter. Part II: Parameter estimation experiments. Mon. Wea. Rev., 136, 16491668.

    • Search Google Scholar
    • Export Citation
  • Tsonis, A. A., and G. L. Austin, 1981: An evaluation of extrapolation techniques for the short-term prediction of rain amounts. Atmos.–Ocean, 19, 5465.

    • Search Google Scholar
    • Export Citation
  • Turner, B. J., I. Zawadzki, and U. Germann, 2004: Predictability of precipitation from continental radar images. Part III: Operational nowcasting implementation (MAPLE). J. Appl. Meteor., 43, 231248.

    • Search Google Scholar
    • Export Citation
  • Wang, H., J. Sun, S. Fan, and X.-Y. Huang, 2013a: Indirect assimilation of radar ref lectivity with WRF 3D-Var and its impact on prediction of four summertime convective events. J. Appl. Meteor. Climatol., 52, 889902.

    • Search Google Scholar
    • Export Citation
  • Wang, H., J. Sun, X. Zhang, X.-Y. Huang, and T. Auligné, 2013b: Radar data assimilation with WRF 4D-Var. Part I: System development and preliminary testing. Mon. Wea. Rev., 141, 22242244.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev., 128, 40174030.

  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253277.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., C. Davis, W. Wang, K. W. Manning, and J. B. Klemp, 2008: Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Wea. Forecasting, 23, 407437.

    • Search Google Scholar
    • Export Citation
  • Weygandt, S. S., S. G. Benjamin, T. G. Smirnova, and J. M. Brown, 2008: Assimilation of radar reflectivity data using a diabatic digital filter within the Rapid Update Cycle. Preprints, 12th Conf. on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, New Orleans, LA, Amer. Meteor. Soc., 8.4. [Available online at https://ams.confex.com/ams/88Annual/webprogram/Paper134081.html.]

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., 1966: Movement and predictability of radar echoes. National Severe Storms Laboratory Tech. Memo. ERTM-NSSL-28, 30 pp.

  • Wilson, J. W., and R. D. Roberts, 2006: Summary of convective storm initiation and evolution during IHOP: Observational and modeling perspective. Mon. Wea. Rev., 134, 2347.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., N. A. Crook, C. K. Mueller, J. Sun, and M. Dixon, 1998: Nowcasting thunderstorms: A status report. Bull. Amer. Meteor. Soc., 79, 20792099.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., E. Ebert, T. Saxen, R. Roberts, C. Mueller, M. Sleigh, C. Pierce, and A. Seed, 2004: Sydney 2000 Forecast Demonstration Project: Convective storm nowcasting. Wea. Forecasting, 19, 131150.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., Y. Feng, and M. Chen, 2010: Nowcasting challenges during the Beijing Olympics: Successes, failures, and implications for future nowcasting systems. Wea. Forecasting, 25, 16911714.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, E. Lim, Y.-R. Guo, and D. M. Barker, 2005: Assimilation of Doppler radar observations with a regional 3DVAR system: Impact of Doppler velocities on forecasts of a heavy rainfall case. J. Appl. Meteor., 44, 768788.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Y.-H. Kuo, J. Sun, W.-C. Lee, D. M. Barker, and E. Lim, 2007: An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall. J. Appl. Meteor. Climatol., 46, 1422.

    • Search Google Scholar
    • Export Citation
  • Xue, M., D.-H. Wang, J.-D. Gao, K. Brewster, and K. K. Droegemeier, 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82, 139170.

    • Search Google Scholar
    • Export Citation
  • Xue, M., and Coauthors, 2008: CAPS realtime storm-scale ensemble and high-resolution forecasts as part of the NOAA Hazardous Weather Testbed 2008 spring experiment. Preprints, 24th Conf. Several Local Storms, Savannah, GA, Amer. Meteor. Soc., 12.2. [Available online at https://ams.confex.com/ams/24SLS/webprogram/Paper142036.html.]

    • Search Google Scholar
    • Export Citation
  • Xue, M., Y. Jung, and G. Zhang, 2010: State estimation of convective storms with a two-moment microphysics scheme and an ensemble Kalman filter: Experiments with simulated radar data. Quart. J. Roy. Meteor. Soc., 136, 685700.

    • Search Google Scholar
    • Export Citation
  • Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observations on the convective-scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev.,