Comments on “Analogies of Ocean/Atmosphere Rotating Fluid Dynamics with Gyroscopes: Teaching Opportunities”

Alexander Gluhovsky Department of Earth, Atmospheric, and Planetary Sciences, and Department of Statistics, Purdue University, West Lafayette, Indiana

Search for other papers by Alexander Gluhovsky in
Current site
Google Scholar
PubMed
Close
and
Christopher Tong Ames, Iowa

Search for other papers by Christopher Tong in
Current site
Google Scholar
PubMed
Close
Restricted access
Save
  • Arnol'd, V. I., 1989: Mathematical Methods of Classical Mechanics. 2nd ed. Springer, 508 pp.

  • Arnol'd, V. I., 1991: Kolmogorov's hydrodynamic attractors. Proc. Roy. Soc. London, 434A, 1922.

  • Bihlo, A., and J. Staufer, 2011: Minimal atmospheric finite-mode models preserving symmetry and generalized Hamiltonian structures. Physica D, 240, 599606.

    • Search Google Scholar
    • Export Citation
  • Bokhove, O., and T. G. Shepherd, 1996: On Hamiltonian balanced dynamics and the slowest invariant manifold. J. Atmos. Sci., 53, 276297.

    • Search Google Scholar
    • Export Citation
  • Gluhovsky, A., 1982: Nonlinear systems that are super-positions of gyrostats. Sov. Phys. Dokl., 27, 823825.

  • Gluhovsky, A., 2006: Energy-conserving and Hamiltonian low-order models in geophysical fluid dynamics. Nonlinear Processes Geophys., 13, 125133.

    • Search Google Scholar
    • Export Citation
  • Gluhovsky, A., and F. V. Dolzhansky, 1980: Three component models of convection in a rotating fluid. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 16, 311318.

    • Search Google Scholar
    • Export Citation
  • Gluhovsky, A., and C. Tong, 1999: The structure of energy conserving low-order models. Phys. Fluids, 11, 334343.

  • Gluhovsky, A., C. Tong, and E. Agee, 2002: Selection of modes in convective low-order models. J. Atmos. Sci., 59, 13831393.

  • Gotoda, H., R. Takeuchi, Y. Okuno, and T. Miyano, 2013: Low-dimensional dynamical system for Rayleigh-Bénard convection subjected to magnetic field. J. Appl. Phys., 113, 124902, doi:10.1063/1.4795264.

    • Search Google Scholar
    • Export Citation
  • Haine, T. W. N., and D. A. Cherian, 2013: Analogies of ocean/atmosphere rotating fluid dynamics with gyroscopes: Teaching opportunities. Bull. Amer. Meteor. Soc., 94, 673684.

    • Search Google Scholar
    • Export Citation
  • Lakshmivarahan, S., and Y. Wang, 2008a: On the relation between energy-conserving low-order models and a system of coupled generalized Volterra gyrostats with nonlinear feedback. J. Nonlinear Sci., 18, 7597.

    • Search Google Scholar
    • Export Citation
  • Lakshmivarahan, S., and Y. Wang, 2008b: On the structure of energy conserving low-order models and their relation to Volterra gyrostat. Nonlinear Anal., 9B, 15731589.

    • Search Google Scholar
    • Export Citation
  • Leimanis, E., 1965: The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point. Springer, 337 pp.

  • Lorenz, E. N., 1960: Maximum simplification of the dynamic equations. Tellus, 12, 243254.

  • Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130141.

  • Lorenz, E. N., 1986: On the existence of a slow manifold. J. Atmos. Sci., 43, 15471557.

  • Obukhov, A. M., 1969: Integral invariants in hydrodynamic systems. Sov. Phys. Dokl., 14, 3235.

  • Obukhov, A. M., and F. V. Dolzhansky, 1975: On simple models for simulation of nonlinear processes in convection and turbulence. Geophys. Fluid Dyn., 6, 195209.

    • Search Google Scholar
    • Export Citation
  • Thiffeault, J. L., and W. Horton, 1996: Energy-conserving truncations for convection with shear flow. Phys. Fluids, 8, 17151719.

  • Tong, C., 2009: Lord Kelvin's gyrostat and its analogs in physics, including the Lorenz model. Amer. J. Phys., 77, 526537.

  • Tong, C., and A. Gluhovsky, 2002: Energy-conserving low-order models for three-dimensional Rayleigh-Bénard convection. Phys. Rev., 65E, 046306, doi:10.1103/PhysRevE.65.046306.

    • Search Google Scholar
    • Export Citation
  • Tong, C., and A. Gluhovsky, 2008: Gyrostatic extensions of the Howard-Krishnamurti model of thermal convection with shear. Nonlinear Processes Geophys., 15, 7179.

    • Search Google Scholar
    • Export Citation
  • Volterra, V., 1899: Sur la théorie des variations des latitudes. Acta Math., 22, 201357.

  • Wang, Y., and S. Lakshmivarahan, 2009: On the relation between energy conserving low-order models and Hamiltonian systems. Nonlinear Anal., 71, e351e358.

    • Search Google Scholar
    • Export Citation
  • Weidauer, T., O. Pauluis, and J. Schumacher, 2011: Rayleigh-Bénard convection with phase changes in a Galerkin model. Phys. Rev., 84E, 046303, doi:10.1103/PhysRevE.84.046303.

    • Search Google Scholar
    • Export Citation
  • Weiss, N. O., 2011: Chaotic behaviour in low-order models of planetary and stellar dynamos. Geophys. Astrophys. Fluid Dyn., 105, 256272.

    • Search Google Scholar
    • Export Citation
  • Wittenburg, J., 2008: Dynamics of Multibody Systems. Springer, 223 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 193 132 2
PDF Downloads 46 19 2