Arnol'd, V. I., 1989: Mathematical Methods of Classical Mechanics. 2nd ed. Springer, 508 pp.
Arnol'd, V. I., 1991: Kolmogorov's hydrodynamic attractors. Proc. Roy. Soc. London, 434A, 19–22.
Bihlo, A., and J. Staufer, 2011: Minimal atmospheric finite-mode models preserving symmetry and generalized Hamiltonian structures. Physica D, 240, 599–606.
Bokhove, O., and T. G. Shepherd, 1996: On Hamiltonian balanced dynamics and the slowest invariant manifold. J. Atmos. Sci., 53, 276–297.
Gluhovsky, A., 1982: Nonlinear systems that are super-positions of gyrostats. Sov. Phys. Dokl., 27, 823–825.
Gluhovsky, A., 2006: Energy-conserving and Hamiltonian low-order models in geophysical fluid dynamics. Nonlinear Processes Geophys., 13, 125–133.
Gluhovsky, A., and F. V. Dolzhansky, 1980: Three component models of convection in a rotating fluid. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 16, 311–318.
Gluhovsky, A., and C. Tong, 1999: The structure of energy conserving low-order models. Phys. Fluids, 11, 334–343.
Gluhovsky, A., C. Tong, and E. Agee, 2002: Selection of modes in convective low-order models. J. Atmos. Sci., 59, 1383–1393.
Gotoda, H., R. Takeuchi, Y. Okuno, and T. Miyano, 2013: Low-dimensional dynamical system for Rayleigh-Bénard convection subjected to magnetic field. J. Appl. Phys., 113, 124902, doi:10.1063/1.4795264.
Haine, T. W. N., and D. A. Cherian, 2013: Analogies of ocean/atmosphere rotating fluid dynamics with gyroscopes: Teaching opportunities. Bull. Amer. Meteor. Soc., 94, 673–684.
Lakshmivarahan, S., and Y. Wang, 2008a: On the relation between energy-conserving low-order models and a system of coupled generalized Volterra gyrostats with nonlinear feedback. J. Nonlinear Sci., 18, 75–97.
Lakshmivarahan, S., and Y. Wang, 2008b: On the structure of energy conserving low-order models and their relation to Volterra gyrostat. Nonlinear Anal., 9B, 1573–1589.
Leimanis, E., 1965: The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point. Springer, 337 pp.
Lorenz, E. N., 1960: Maximum simplification of the dynamic equations. Tellus, 12, 243–254.
Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141.
Lorenz, E. N., 1986: On the existence of a slow manifold. J. Atmos. Sci., 43, 1547–1557.
Obukhov, A. M., 1969: Integral invariants in hydrodynamic systems. Sov. Phys. Dokl., 14, 32–35.
Obukhov, A. M., and F. V. Dolzhansky, 1975: On simple models for simulation of nonlinear processes in convection and turbulence. Geophys. Fluid Dyn., 6, 195–209.
Thiffeault, J. L., and W. Horton, 1996: Energy-conserving truncations for convection with shear flow. Phys. Fluids, 8, 1715–1719.
Tong, C., 2009: Lord Kelvin's gyrostat and its analogs in physics, including the Lorenz model. Amer. J. Phys., 77, 526–537.
Tong, C., and A. Gluhovsky, 2002: Energy-conserving low-order models for three-dimensional Rayleigh-Bénard convection. Phys. Rev., 65E, 046306, doi:10.1103/PhysRevE.65.046306.
Tong, C., and A. Gluhovsky, 2008: Gyrostatic extensions of the Howard-Krishnamurti model of thermal convection with shear. Nonlinear Processes Geophys., 15, 71–79.
Volterra, V., 1899: Sur la théorie des variations des latitudes. Acta Math., 22, 201–357.
Wang, Y., and S. Lakshmivarahan, 2009: On the relation between energy conserving low-order models and Hamiltonian systems. Nonlinear Anal., 71, e351–e358.
Weidauer, T., O. Pauluis, and J. Schumacher, 2011: Rayleigh-Bénard convection with phase changes in a Galerkin model. Phys. Rev., 84E, 046303, doi:10.1103/PhysRevE.84.046303.
Weiss, N. O., 2011: Chaotic behaviour in low-order models of planetary and stellar dynamos. Geophys. Astrophys. Fluid Dyn., 105, 256–272.
Wittenburg, J., 2008: Dynamics of Multibody Systems. Springer, 223 pp.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 193 | 132 | 2 |
PDF Downloads | 46 | 19 | 2 |
Displayed acceptance dates for articles published prior to 2023 are approximate to within a week. If needed, exact acceptance dates can be obtained by emailing amsjol@ametsoc.org.
Arnol'd, V. I., 1989: Mathematical Methods of Classical Mechanics. 2nd ed. Springer, 508 pp.
Arnol'd, V. I., 1991: Kolmogorov's hydrodynamic attractors. Proc. Roy. Soc. London, 434A, 19–22.
Bihlo, A., and J. Staufer, 2011: Minimal atmospheric finite-mode models preserving symmetry and generalized Hamiltonian structures. Physica D, 240, 599–606.
Bokhove, O., and T. G. Shepherd, 1996: On Hamiltonian balanced dynamics and the slowest invariant manifold. J. Atmos. Sci., 53, 276–297.
Gluhovsky, A., 1982: Nonlinear systems that are super-positions of gyrostats. Sov. Phys. Dokl., 27, 823–825.
Gluhovsky, A., 2006: Energy-conserving and Hamiltonian low-order models in geophysical fluid dynamics. Nonlinear Processes Geophys., 13, 125–133.
Gluhovsky, A., and F. V. Dolzhansky, 1980: Three component models of convection in a rotating fluid. Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana, 16, 311–318.
Gluhovsky, A., and C. Tong, 1999: The structure of energy conserving low-order models. Phys. Fluids, 11, 334–343.
Gluhovsky, A., C. Tong, and E. Agee, 2002: Selection of modes in convective low-order models. J. Atmos. Sci., 59, 1383–1393.
Gotoda, H., R. Takeuchi, Y. Okuno, and T. Miyano, 2013: Low-dimensional dynamical system for Rayleigh-Bénard convection subjected to magnetic field. J. Appl. Phys., 113, 124902, doi:10.1063/1.4795264.
Haine, T. W. N., and D. A. Cherian, 2013: Analogies of ocean/atmosphere rotating fluid dynamics with gyroscopes: Teaching opportunities. Bull. Amer. Meteor. Soc., 94, 673–684.
Lakshmivarahan, S., and Y. Wang, 2008a: On the relation between energy-conserving low-order models and a system of coupled generalized Volterra gyrostats with nonlinear feedback. J. Nonlinear Sci., 18, 75–97.
Lakshmivarahan, S., and Y. Wang, 2008b: On the structure of energy conserving low-order models and their relation to Volterra gyrostat. Nonlinear Anal., 9B, 1573–1589.
Leimanis, E., 1965: The General Problem of the Motion of Coupled Rigid Bodies about a Fixed Point. Springer, 337 pp.
Lorenz, E. N., 1960: Maximum simplification of the dynamic equations. Tellus, 12, 243–254.
Lorenz, E. N., 1963: Deterministic nonperiodic flow. J. Atmos. Sci., 20, 130–141.
Lorenz, E. N., 1986: On the existence of a slow manifold. J. Atmos. Sci., 43, 1547–1557.
Obukhov, A. M., 1969: Integral invariants in hydrodynamic systems. Sov. Phys. Dokl., 14, 32–35.
Obukhov, A. M., and F. V. Dolzhansky, 1975: On simple models for simulation of nonlinear processes in convection and turbulence. Geophys. Fluid Dyn., 6, 195–209.
Thiffeault, J. L., and W. Horton, 1996: Energy-conserving truncations for convection with shear flow. Phys. Fluids, 8, 1715–1719.
Tong, C., 2009: Lord Kelvin's gyrostat and its analogs in physics, including the Lorenz model. Amer. J. Phys., 77, 526–537.
Tong, C., and A. Gluhovsky, 2002: Energy-conserving low-order models for three-dimensional Rayleigh-Bénard convection. Phys. Rev., 65E, 046306, doi:10.1103/PhysRevE.65.046306.
Tong, C., and A. Gluhovsky, 2008: Gyrostatic extensions of the Howard-Krishnamurti model of thermal convection with shear. Nonlinear Processes Geophys., 15, 71–79.
Volterra, V., 1899: Sur la théorie des variations des latitudes. Acta Math., 22, 201–357.
Wang, Y., and S. Lakshmivarahan, 2009: On the relation between energy conserving low-order models and Hamiltonian systems. Nonlinear Anal., 71, e351–e358.
Weidauer, T., O. Pauluis, and J. Schumacher, 2011: Rayleigh-Bénard convection with phase changes in a Galerkin model. Phys. Rev., 84E, 046303, doi:10.1103/PhysRevE.84.046303.
Weiss, N. O., 2011: Chaotic behaviour in low-order models of planetary and stellar dynamos. Geophys. Astrophys. Fluid Dyn., 105, 256–272.
Wittenburg, J., 2008: Dynamics of Multibody Systems. Springer, 223 pp.
All Time | Past Year | Past 30 Days | |
---|---|---|---|
Abstract Views | 0 | 0 | 0 |
Full Text Views | 193 | 132 | 2 |
PDF Downloads | 46 | 19 | 2 |