Lidar-Measured Wind Profiles: The Missing Link in the Global Observing System

Wayman E. Baker NOAA, McHenry, Maryland

Search for other papers by Wayman E. Baker in
Current site
Google Scholar
PubMed
Close
,
Robert Atlas NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

Search for other papers by Robert Atlas in
Current site
Google Scholar
PubMed
Close
,
Carla Cardinali European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Carla Cardinali in
Current site
Google Scholar
PubMed
Close
,
Amy Clement University of Miami, Miami, Florida

Search for other papers by Amy Clement in
Current site
Google Scholar
PubMed
Close
,
George D. Emmitt Simpson Weather Associates, Charlottesville, Virginia

Search for other papers by George D. Emmitt in
Current site
Google Scholar
PubMed
Close
,
Bruce M. Gentry NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Bruce M. Gentry in
Current site
Google Scholar
PubMed
Close
,
R. Michael Hardesty Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, Boulder, Colorado

Search for other papers by R. Michael Hardesty in
Current site
Google Scholar
PubMed
Close
,
Erland Källén European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Erland Källén in
Current site
Google Scholar
PubMed
Close
,
Michael J. Kavaya NASA Langley Research Center, Hampton, Virginia

Search for other papers by Michael J. Kavaya in
Current site
Google Scholar
PubMed
Close
,
Rolf Langland Naval Research Laboratory, Monterey, California

Search for other papers by Rolf Langland in
Current site
Google Scholar
PubMed
Close
,
Zaizhong Ma Joint Center for Satellite Data Assimilation, College Park, Maryland

Search for other papers by Zaizhong Ma in
Current site
Google Scholar
PubMed
Close
,
Michiko Masutani NOAA/Environmental Modeling Center, College Park, Maryland

Search for other papers by Michiko Masutani in
Current site
Google Scholar
PubMed
Close
,
Will McCarty NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Will McCarty in
Current site
Google Scholar
PubMed
Close
,
R. Bradley Pierce NOAA/National Environmental Satellite, Data, and Information Service, Madison, Wisconsin

Search for other papers by R. Bradley Pierce in
Current site
Google Scholar
PubMed
Close
,
Zhaoxia Pu University of Utah, Salt Lake City, Utah

Search for other papers by Zhaoxia Pu in
Current site
Google Scholar
PubMed
Close
,
Lars Peter Riishojgaard World Meteorological Organization, Geneva, Switzerland

Search for other papers by Lars Peter Riishojgaard in
Current site
Google Scholar
PubMed
Close
,
James Ryan University of New Hampshire, Durham, New Hampshire

Search for other papers by James Ryan in
Current site
Google Scholar
PubMed
Close
,
Sara Tucker Ball Aerospace and Technologies Corp., Boulder, Colorado

Search for other papers by Sara Tucker in
Current site
Google Scholar
PubMed
Close
,
Martin Weissmann Hans-Ertel-Centre for Weather Research, Ludwig-Maximilians-Universität München, Munich, Germany

Search for other papers by Martin Weissmann in
Current site
Google Scholar
PubMed
Close
, and
James G. Yoe Joint Center for Satellite Data Assimilation, College Park, Maryland

Search for other papers by James G. Yoe in
Current site
Google Scholar
PubMed
Close
Restricted access

The three-dimensional global wind field is the most important remaining measurement needed to accurately assess the dynamics of the atmosphere. Wind information in the tropics, high latitudes, and stratosphere is particularly deficient. Furthermore, only a small fraction of the atmosphere is sampled in terms of wind profiles. This limits our ability to optimally specify initial conditions for numerical weather prediction (NWP) models and our understanding of several key climate change issues.

Because of its extensive wind measurement heritage (since 1968) and especially the rapid recent technology advances, Doppler lidar has reached a level of maturity required for a space-based mission. The European Space Agency (ESA)'s Atmospheric Dynamics Mission Aeolus (ADM-Aeolus) Doppler wind lidar (DWL), now scheduled for launch in 2015, will be a major milestone.

This paper reviews the expected impact of DWL measurements on NWP and climate research, measurement concepts, and the recent advances in technology that will set the stage for space-based deployment. Forecast impact experiments with actual airborne DWL measurements collected over the North Atlantic in 2003 and assimilated into the European Centre for Medium-Range Weather Forecasts (ECMWF) operational model are a clear indication of the value of lidar-measured wind profiles. Airborne DWL measurements collected over the western Pacific in 2008 and assimilated into both the ECMWF and U.S. Navy operational models support the earlier findings.

These forecast impact experiments confirm observing system simulation experiments (OSSEs) conducted over the past 25–30 years. The addition of simulated DWL wind observations in recent OSSEs performed at the Joint Center for Satellite Data Assimilation (JCSDA) leads to a statistically significant increase in forecast skill.

* Retired

CORRESPONDING AUTHOR: Dr. Wayman E. Baker, 253 Gleanings Drive, McHenry, MD 21541, E-mail: wayman.baker@gmail.com

A supplement to this article is available online (10.1175/BAMS-D-12-00164.2)

The three-dimensional global wind field is the most important remaining measurement needed to accurately assess the dynamics of the atmosphere. Wind information in the tropics, high latitudes, and stratosphere is particularly deficient. Furthermore, only a small fraction of the atmosphere is sampled in terms of wind profiles. This limits our ability to optimally specify initial conditions for numerical weather prediction (NWP) models and our understanding of several key climate change issues.

Because of its extensive wind measurement heritage (since 1968) and especially the rapid recent technology advances, Doppler lidar has reached a level of maturity required for a space-based mission. The European Space Agency (ESA)'s Atmospheric Dynamics Mission Aeolus (ADM-Aeolus) Doppler wind lidar (DWL), now scheduled for launch in 2015, will be a major milestone.

This paper reviews the expected impact of DWL measurements on NWP and climate research, measurement concepts, and the recent advances in technology that will set the stage for space-based deployment. Forecast impact experiments with actual airborne DWL measurements collected over the North Atlantic in 2003 and assimilated into the European Centre for Medium-Range Weather Forecasts (ECMWF) operational model are a clear indication of the value of lidar-measured wind profiles. Airborne DWL measurements collected over the western Pacific in 2008 and assimilated into both the ECMWF and U.S. Navy operational models support the earlier findings.

These forecast impact experiments confirm observing system simulation experiments (OSSEs) conducted over the past 25–30 years. The addition of simulated DWL wind observations in recent OSSEs performed at the Joint Center for Satellite Data Assimilation (JCSDA) leads to a statistically significant increase in forecast skill.

* Retired

CORRESPONDING AUTHOR: Dr. Wayman E. Baker, 253 Gleanings Drive, McHenry, MD 21541, E-mail: wayman.baker@gmail.com

A supplement to this article is available online (10.1175/BAMS-D-12-00164.2)

Supplementary Materials

    • Supplemental Materials (PDF 531.56 KB)
Save
  • Andersson, E., and M. Masutani, 2010: Collaboration on observing system simulation experiments (Joint OSSE). ECMWF Newsletter, No. 123, ECMWF, Reading, United Kingdom, 1416.

    • Search Google Scholar
    • Export Citation
  • Ansmann, A., U. Wandinger, O. Le Rille, D. Lajas, and A. G. Straume, 2007: Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: Methodology and simulations. Appl. Opt., 46, 66066622, doi:10.1364/AO.46.006606.

    • Search Google Scholar
    • Export Citation
  • Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313333.

  • Atlas, R., 1997: Atmospheric observations and experiments to assess their usefulness in data assimilation. J. Meteor. Soc. Japan, 75, 111130.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., and G. D. Emmitt, 2008: Review of observing system simulation experiments to evaluate the potential impact of lidar winds. 24th International Laser Radar Conference 2008 (ILRC24), Vol. 2, Curran Associates, 726729.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., and L. P. Riishojgaard, 2008: Application of OSSEs to observing system design. Remote Sensing System Engineering, P. E. Ardanuy and J. J. Puschell, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7087), 708707, doi:10.1117/12.795344.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., E. Kalnay, W. E. Baker, J. Susskind, D. Reuter, and M. Halem, 1985a: Simulation studies of the impact of future observing systems on weather prediction. Preprints, Seventh Conf. on Numerical Weather Prediction, Montreal, QC, Canada, Amer. Meteor. Soc., 145151.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., E. Kalnay, and M. Halem, 1985b: Impact of satellite temperature sounding and wind data on numerical weather prediction. Opt. Eng., 24, 341346.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., A. Y. Hou, and O. Reale, 2005a: Application of SeaWinds scatterometer and TMI-SSM/I rain rates to hurricane analysis and forecasting. J. Photogramm. Remote Sens., 59, 233243.

    • Search Google Scholar
    • Export Citation
  • Atlas, R., and Coauthors, 2005b: Hurricane forecasting with the high-resolution NASA finite volume general circulation model. Geophys. Res. Lett., 32, L03807, doi:10.1029/2004GL021513.

    • Search Google Scholar
    • Export Citation
  • Baker, N. L., 2000: Observation adjoint sensitivity and the adaptive observation-targeting problem. Ph.D. dissertation, Naval Postgraduate School, 265 pp.

    • Search Google Scholar
    • Export Citation
  • Baker, N. L., and R. H. Langland, 2008: Diagnostics for evaluating the impact of satellite observations. Recent developments in the use of satellite observations in numerical weather prediction, ECMWF Seminar Proceedings, 309326.

    • Search Google Scholar
    • Export Citation
  • Baker, N. L., and R. H. Langland, 2009: Diagnostics for evaluating the impact of satellite observations. Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications, S. K. Park and L. Xu, Eds., Springer, 177196.

    • Search Google Scholar
    • Export Citation
  • Baker, W. E., and Coauthors, 1995: Lidar-measured winds from space: A key component for weather and climate prediction. Bull. Amer. Meteor. Soc., 76, 869888.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105, 221252.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897914.

    • Search Google Scholar
    • Export Citation
  • Benedetti-Michelangeli, G., F. Congeduti, and G. Fiocco, 1972: Measurement of aerosol motion and wind velocity in the lower troposhere by Doppler optical radar. J. Atmos. Sci., 29, 906910.

    • Search Google Scholar
    • Export Citation
  • Bluestein, H. B., G. D. Emmitt, J. Houser, and R. Bluth, 2011: On the use of a mobile Doppler lidar to probe the boundary layer near and in tornadic and non-tornadic supercells. Preprints, Fifth Symp. on Lidar Atmospheric Applications, Seattle, WA, Amer. Meteor. Soc., 6.5. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Paper179772.html.]

    • Search Google Scholar
    • Export Citation
  • Braun, S., and Coauthors, 2013: NASA's Genesis and Rapid Intensification Processes (GRIP) Field Experiment. Bull. Amer. Meteor. Soc., 94, 345363.

    • Search Google Scholar
    • Export Citation
  • Bruneau, B., and J. Pelon, 2003: Simultaneous measurements of particle backscattering and extinction coefficients and wind velocity by lidar with a Mach-Zehnder interferometer: Principle of operation and performance assessment. Appl. Opt., 42, 11011114.

    • Search Google Scholar
    • Export Citation
  • Bruneau, D., 2001: Mach-Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar. Appl. Opt., 40, 391399.

  • Bruneau, D., 2002: Fringe-imaging Mach-Zehnder interferometer as a spectral analyzer for molecular Doppler wind lidar. Appl. Opt., 41, 503510.

    • Search Google Scholar
    • Export Citation
  • Cardinali, C., 2009: Monitoring the observation impact on the short-range forecast. Quart. J. Roy. Meteor. Soc., 135, 239250.

  • Cardinali, C., S. Pezzulli, and E. Andersson, 2004: Influence-matrix diagnostic of a data assimilation system. Quart. J. Roy. Meteor. Soc., 130, 27672786.

    • Search Google Scholar
    • Export Citation
  • Cézard, N., A. Dolfi-Bouteyre, J.-P. Huignard, and P. H. Flamant, 2009: Performance evaluation of a dual fringe-imaging Michelson interferometer for air parameter measurements with a 355 nm Rayleigh-Mie lidar. Appl. Opt., 48, 23212332.

    • Search Google Scholar
    • Export Citation
  • Chanin, M. L., A. Garnier, A. Hauchecorn, and J. Porteneuve, 1989: A Doppler lidar for measuring winds in the middle atmosphere. Geophys. Res. Lett., 16, 12731276.

    • Search Google Scholar
    • Export Citation
  • Chen, J. Y., B. E. Carlson, and A. D. Del Genio, 2002: Evidence for strengthening of the tropical general circulation in the 1990s. Science, 295, 838841.

    • Search Google Scholar
    • Export Citation
  • Cress, A., and W. Wergen, 2001: Impact of profile observations on the German Weather Service's NWP system. Meteor. Z., 10, 91101.

  • Dee, D. P., and S. Uppala, 2009: Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Quart. J. Roy. Meteor. Soc., 135, 18301841.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597.

    • Search Google Scholar
    • Export Citation
  • Dehring, M. T., J. M. Ryan, P. B. Hays, B. Moore III, and J. Wang, 2005: GroundWinds balloon fringe-imaging Doppler lidar mission concept and instrument performance. Lidar Remote Sensing for Industry and Environmental Monitoring V, U. N. Singh and K. Mizutani, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 5653), doi:10.1117/12.580170.

    • Search Google Scholar
    • Export Citation
  • de Wekker, S. F. J., K. S. Godwin, G. D. Emmitt, and S. Greco, 2012: Airborne Doppler lidar measurements of valley flows in complex coastal terrain. J. Appl. Meteor. Climatol., 51, 15581574.

    • Search Google Scholar
    • Export Citation
  • Dong, J., and Coauthors, 2010: Doppler lidar measurement of wind in the stratosphere. J. Opt. Soc. Korea, 14, 199203.

  • Emmitt, G. D., S. Greco, and S. Wood, 2010: Using an airborne Doppler wind lidar to explore the potential impact of a future space-based wind lidar, particularly in the case of tropical cyclones. Preprints, 14th Symp. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), Atlanta, GA, Amer. Meteor. Soc., 1.3. [Available online at https://ams.confex.com/ams/90annual/techprogram/paper_165444.htm.]

    • Search Google Scholar
    • Export Citation
  • Emmitt, G. D., Z. Pu, K. Godwin, and S. Greco, 2011a: Airborne Doppler wind lidar data impacts on tropical cyclone track and intensity forecasting: The data processing, interpretation and assimilation. Preprints, 15th Symp. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans and Land Surface (IOAS-AOLS), Seattle, WA, Amer. Meteor. Soc., 9.2. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Paper182343.html.]

    • Search Google Scholar
    • Export Citation
  • Emmitt, G. D., S. A. Wood, M. J. Kavaya, B. Gentry, and W. Baker, 2011b: Technology and data utility challenges for a Doppler wind lidar on the International Space Station. Preprints, 15th Symp. on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS), Seattle, WA, Amer. Meteor. Soc., 2.2. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Paper182281.html.]

    • Search Google Scholar
    • Export Citation
  • Endemann, M., 2006: ADM-Aeolus: The first space-borne wind lidar. Lidar Remote Sensing for Environmental Monitoring VII, U. N. Singh, T. Itabe, and D. Narayana Rao, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6409), 64090G, doi:10.1117/12.697081.

    • Search Google Scholar
    • Export Citation
  • ESA, 2008: ADM-Aeolus science report. P. Clissold, Ed., European Space Agency Rep. ESA SP-1311, 121 pp.

  • Flamant, P. H., J. Cuesta, M.-L. Denneulin, A. Dabas, and D. Huber, 2008: ADM-Aeolus retrieval algorithms for aerosol and cloud products. Tellus, 60A, 273286, doi:10.1111/j.1600-0870.2007.00287.x.

    • Search Google Scholar
    • Export Citation
  • Garnier, A., and M. L. Chanin, 1992: Description of a Doppler Rayleigh lidar for measuring winds in the middle atmosphere. Appl. Phys., 55B, 3540.

    • Search Google Scholar
    • Export Citation
  • Gelaro, R., R. H. Langland, S. Pellerin, and R. Todling, 2010: The THORPEX observation impact intercomparison experiment. Mon. Wea. Rev., 138, 40094025.

    • Search Google Scholar
    • Export Citation
  • Gentry, B. M., and C. L. Korb, 1994: Edge technique for high-accuracy Doppler velocimetry. Appl. Opt., 33, 57705777.

  • Gentry, B. M., H. Chen, and S. X. Li, 2000: Wind measurements with 355-nm molecular Doppler lidar. Opt. Lett., 25, 12311233.

  • Gentry, B. M., H. Chen, J. Cervantes, R. Machan, D. Reed, R. Cargo, C. Marx, and P. Jordan, 2011: Airborne testing of the TWiLiTE direct detection Doppler lidar. 16th Coherent Laser Radar Conference 2011 (CLRC XVI), Curran Associates, 164167.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., 2006: Do changes in the midlatitude circulation have any impact on the Arctic surface temperature trend? J. Climate, 19, 54225438.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., E. Källén, M. Tjernström, and H. Körnich, 2007: Atmospheric mass-transport inconsistencies in the ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 133, 673680.

    • Search Google Scholar
    • Export Citation
  • Graversen, R. G., T. Mauritsen, M. Tjernström, E. Källén, and G. Svensson, 2008: Vertical structure of recent Arctic warming. Nature, 451, 5356.

    • Search Google Scholar
    • Export Citation
  • Grund, C. J., and S. C. Tucker, 2011: Optical Autocovariance Wind Lidar (OAWL): A new approach to direct-detection Doppler wind profiling. Preprints, Fifth Symp. on Lidar, Seattle, WA, Amer. Meteor. Soc., 4.9. [Available online at https://ams.confex.com/ams/91Annual/webprogram/Paper188184.html.]

    • Search Google Scholar
    • Export Citation
  • Grund, C. J., R. M. Banta, J. L. George, J. N. Howell, M. J. Post, R. A. Richter, and A. M. Weickmann, 2001: High-resolution Doppler lidar for boundary layer and cloud research. J. Atmos. Oceanic Technol., 18, 376393.

    • Search Google Scholar
    • Export Citation
  • Grund, C. J., J. Howell, R. Pierce, M. Stephens, 2009: Optical autocovariance direct detection lidar for simultaneous wind, aerosol, and chemistry profiling from ground, air, and space platforms. Advanced Environmental, Chemical, and Biological Sensing Technologies VI. T. Vo-Dinh, R. A. Lieberman, and G. Gauglitz, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7312), doi:10.1117/12.824204.

    • Search Google Scholar
    • Export Citation
  • Hannon, S. M., K. S. Barr, D. K. Jacob, and M. W. Phillips, 2005: Application of pulsed Doppler lidar in the airport terminal area. Lidar Remote Sensing for Industry and Environmental Monitoring V, S. M. Hannon et al., Eds., International Society for Optical Engineering (SPIE Proceedings Vol. 5653), doi:10.1117/12.579037.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., and L. Nazarenko, 2004: Soot climate forcing via snow and ice albedos. Proc. Natl. Acad. Sci. USA, 101, 423428, doi:10.1073/pnas.2237157100.

    • Search Google Scholar
    • Export Citation
  • Hays, P. B., 1990: Circle to line interferometer optical system. Appl. Opt., 29, 14821489.

  • Henderson, S. W., P. Gatt, D. Rees, and R. M. Huffaker, 2005: Wind lidar. Laser Remote Sensing, T. Fujii and T. Fukuchi, Eds., Optical Science and Engineering Series, Vol. 97, CRC Press, 469722.

    • Search Google Scholar
    • Export Citation
  • Houchi, K., A. Stoffelen, G. J. Marseille, and J. de Kloe, 2010: Comparison of wind and wind shear climatologies derived from high-resolution radiosondes and the ECMWF model. J. Geophys. Res., 115, D22123, doi:10.1029/2009JD013196.

    • Search Google Scholar
    • Export Citation
  • Hovis, F. E., 2006: Qualification of the laser transmitter for the CALIPSO aerosol lidar mission. Solid State Lasers XV: Technology and Devices, H. J. Hoffman and R. K. Shori, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 6100), 61001X, doi:10.1117/12.659748.

    • Search Google Scholar
    • Export Citation
  • Huffaker, R. M., and R. M. Hardesty, 1996: Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems. Proc. IEEE, 84, 181204.

    • Search Google Scholar
    • Export Citation
  • Huffaker, R. M., A. V. Jelalian, and J. A. L. Thomson, 1970: Laser-Doppler system for detection of aircraft trailing vortices. Proc. IEEE, 58, 322326.

    • Search Google Scholar
    • Export Citation
  • Hunt, W. H., D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, 2009: CALIPSO lidar description and performance assessment. J. Atmos. Oceanic Technol., 26, 12141228.

    • Search Google Scholar
    • Export Citation
  • Irgang, T. D., P. B. Hays, and W. R. Skinner, 2002: Two-channel direct-detection Doppler lidar employing a charge-coupled device as a detector. Appl. Opt., 41, 11451155.

    • Search Google Scholar
    • Export Citation
  • Källén, E., D. Tan, C. Cardinali, and P. Berrisford, 2010: Spaceborne Doppler wind lidars – Scientific Motivation and Impact Studies for ADM/Aeolus. 33rd Meeting of the Working Group on Space-Based Lidar Winds, Destin, FL, CIRES. [Available online at http://cires.colorado.edu/events/lidarworkshop/LWG/Feb10/Papers.feb10/Kallen.feb10.ppt.]

    • Search Google Scholar
    • Export Citation
  • Käsler, Y., S. Rahm, R. Simmet, and M. Kühn, 2010: Wake measurements of a multi-MW wind turbine with coherent long-range pulsed Doppler wind lidar. J. Atmos. Oceanic Technol., 27, 15291532.

    • Search Google Scholar
    • Export Citation
  • Kavaya, M. J., S. W. Henderson, J. R. Magee, C. P. Hale, and R. M. Huffaker, 1989: Remote wind profiling with a solid-state Nd:YAG coherent lidar system. Opt. Lett., 14, 776778.

    • Search Google Scholar
    • Export Citation
  • Kavaya, M. J., J. Y. Beyon, G. J. Koch, M. Petros, P. J. Petzar, U. N. Singh, B. C. Trieu, and J. Yu, 2014: The Doppler Aerosol Wind Lidar (DAWN) airborne, wind-profiling, coherent-detection lidar system: Overview and preliminary flight results. J. Atmos. Oceanic Technol., in press.

    • Search Google Scholar
    • Export Citation
  • Key, J., D. Santek, C. S. Velden, N. Bormann, J.-N. Thepaut, L. P. Riishojgaard, Y. Zhu, and W. P. Menzel, 2003: Cloud-drift and water vapor winds in the polar regions from MODIS. IEEE Trans. Geosci. Remote Sens., 41, 482492.

    • Search Google Scholar
    • Export Citation
  • Kinne, S., and Coauthors., 2006: An AeroCom initial assessment—Optical properties in aerosol component modules of global models. Atmos. Chem. Phys., 6, 18151834.