Ocean Wind Speed Climatology from Spaceborne SAR Imagery

Frank M. Monaldo The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland

Search for other papers by Frank M. Monaldo in
Current site
Google Scholar
PubMed
Close
,
Xiaofeng Li GST at the National Oceanic and Atmospheric Administration, College Park, Maryland

Search for other papers by Xiaofeng Li in
Current site
Google Scholar
PubMed
Close
,
William G. Pichel National Oceanic and Atmospheric Administration, College Park, Maryland

Search for other papers by William G. Pichel in
Current site
Google Scholar
PubMed
Close
, and
Christopher R. Jackson Global Ocean Associates, Alexandria, Virginia

Search for other papers by Christopher R. Jackson in
Current site
Google Scholar
PubMed
Close
Restricted access

Spaceborne synthetic aperture radar (SAR) imagery can make high-resolution (≤500 m) ocean wind speed measurements. The authors anticipate reprocessing the full decade and a half of Radarsat-1 SAR imagery and generating a SAR wind speed archive. These data will be of use for studies of coastal atmospheric phenomena and assessment of offshore wind power potential. To illustrate the potential of this latter application, they review the ability of SARs to measure wind speed, discuss an approach for using SARs to create wind speed climatologies useful for wind power resource assessments, and consider issues concerning the applicably of such data for these assessments.

CORRESPONDING AUTHOR: Frank M. Monaldo, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, E-mail: frank.monaldo@jhuapl.edu

Spaceborne synthetic aperture radar (SAR) imagery can make high-resolution (≤500 m) ocean wind speed measurements. The authors anticipate reprocessing the full decade and a half of Radarsat-1 SAR imagery and generating a SAR wind speed archive. These data will be of use for studies of coastal atmospheric phenomena and assessment of offshore wind power potential. To illustrate the potential of this latter application, they review the ability of SARs to measure wind speed, discuss an approach for using SARs to create wind speed climatologies useful for wind power resource assessments, and consider issues concerning the applicably of such data for these assessments.

CORRESPONDING AUTHOR: Frank M. Monaldo, The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, E-mail: frank.monaldo@jhuapl.edu
Save
  • Badger, M., and Coauthors, 2012: Bringing satellite winds to hub-height. Proc. EWEA 2012 European Wind Energy Conf., Copenhagen, Denmark, European Wind Energy Association. [Available online at http://proceedings.ewea.org/annual2012/allfiles2/979_EWEA2012presentation.pdf.]

    • Search Google Scholar
    • Export Citation
  • Barthelmie, R. J., and S. C. Pryor, 2003: Can satellite sampling of offshore wind speeds realistically represent wind speed distributions? J. Appl. Meteor., 42, 8394.

    • Search Google Scholar
    • Export Citation
  • Barthelmie, R. J., and S. C. Pryor, 2006: Challenges in predicting power output from offshore wind farms. J. Energy Eng., 132, 91103.

    • Search Google Scholar
    • Export Citation
  • Christiansen, M. B., and C. B. Hasager, 2005: Wake effects of large offshore wind farms identified from satellite SAR. Remote Sens. Environ., 98, 251268.

    • Search Google Scholar
    • Export Citation
  • Christiansen, M. B., C. B. Hasager, and F. M. Monaldo, 2006: Offshore winds observed from space: Issues for planning of offshore wind farms. Windtech Int., 2(5), 69.

    • Search Google Scholar
    • Export Citation
  • Dagestad, K.-F., and Coauthors, 2012: Wind retrieval from synthetic aperture radar: An overview. Proc. SEASAR 2012 Advances in SAR Oceanography, Tromsø, Norway, European Space Agency, ESA SP-709.

    • Search Google Scholar
    • Export Citation
  • Horstmann, J., W. Koch, S. Lehner, and W. Rosenthal, 1998: Ocean wind fields and their variability derived from SAR. Earth Obs. Quart., 59, 812.

    • Search Google Scholar
    • Export Citation
  • Loescher, K. A., G. S. Young, B. A. Colle, and N. W. Winstead, 2006: Climatology of barrier jets along the Alaska Coast. Part I: Spatial and temporal distributions. Mon. Wea. Rev., 134, 437452.

    • Search Google Scholar
    • Export Citation
  • Monaldo, F. M., 2010: Maryland offshore wind climatology with application to wind power generation. Tech. Rep. SRO-10-10, Johns Hopkins Applied Physics Laboratory, 33 pp.

    • Search Google Scholar
    • Export Citation
  • Monaldo, F. M., D. R. Thompson, R. C. Beal, W. G. Pichel, and P. Clemente-Colón, 2001: Comparison of SAR-derived wind speed with model predictions and buoy comparisons. IEEE Trans. Geosci. Remote Sens., 39, 25872600.

    • Search Google Scholar
    • Export Citation
  • Monaldo, F. M., D. R. Thompson, W. G. Pichel, and P. Clemente-Colón, 2004: A systematic comparison of QuikSCAT and SAR ocean surface wind speeds. IEEE Trans. Geosci. Remote Sens., 42, 283291.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., M. Nielsen, R. J. Barthelmie, and J. Mann, 2004: Can satellite sampling of offshore wind speeds realistically represent wind speed distributions? Part II: Quantifying uncertainties associated with distribution fitting methods. J. Appl. Meteor., 43, 739750.

    • Search Google Scholar
    • Export Citation
  • Stoffelen, A. C. M., and D. L. T. Anderson, 1997: Scatterometer data interpretation: Estimation and validation of the transfer function CMOD4. J. Geophys. Res., 102 (C3), 57675780.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. 1st ed. Kluwer Academic, 666 pp.

  • Thompson, D. R., T. M. Elfouhaily, and B. Chapron, 1999: Polarization ratio for microwave backscattering from the ocean surface at low to moderate incidence angles. Proc. 1999 Int. Geoscience and Remote Sensing Symp., Seattle, WA, IEEE, 16711673.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. R., J. Horstmann, A. Mouche, N. S. Winstead, R. Sterner, and F. M. Monaldo, 2012: Comparison of high-resolution wind fields extracted from TerraSAR-X SAR imagery with predictions from the WRF mesoscale model. J. Geophys. Res., 117, C02035, doi:10.1029/2011JC007526.

    • Search Google Scholar
    • Export Citation
  • Yang, X., X. Li, W. G. Pichel, and Z. Li, 2011: Comparison of ocean surface winds from Envisat ASAR, Metop ASCAT scatterometer, buoy measurements and NOGAPS model. IEEE Trans. Geosci. Remote Sens., 49, 47434750, doi:10.1109/TGRS.2011.2159802.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 352 115 11
PDF Downloads 215 83 8