Understanding the Meteorological Drivers of U.S. Particulate Matter Concentrations in a Changing Climate

John P. Dawson Office of Research and Development, U.S. Environmental Protection Agency, Arlington, Virginia

Search for other papers by John P. Dawson in
Current site
Google Scholar
PubMed
Close
,
Bryan J. Bloomer Office of Research and Development, U.S. Environmental Protection Agency, Arlington, Virginia

Search for other papers by Bryan J. Bloomer in
Current site
Google Scholar
PubMed
Close
,
Darrell A. Winner Office of Research and Development, U.S. Environmental Protection Agency, Arlington, Virginia

Search for other papers by Darrell A. Winner in
Current site
Google Scholar
PubMed
Close
, and
Christopher P. Weaver Office of Research and Development, U.S. Environmental Protection Agency, Arlington, Virginia

Search for other papers by Christopher P. Weaver in
Current site
Google Scholar
PubMed
Close
Restricted access

Particulate matter (PM) air pollution is a serious public health issue for the United States. While there is a growing body of evidence that climate change will partially counter the effectiveness of future precursor emission reductions to reduce ozone (O3) air pollution, the links between PM and climate change are more complex and less understood. This paper discusses what we currently understand about the potential sensitivity of PM episodes to climate-change-related shifts in air pollution meteorology, in the broader context of the emissions and atmospheric chemistry drivers of PM. For example, initial studies have focused largely on annual average concentrations of inorganic aerosol species. However, the potential for future changes in the occurrence of PM episodes, and their underlying meteorological drivers, are likely more important to understand and remain highly uncertain. In addition, a number of other poorly understood factors interact with these likely critical meteorological changes. These include changes in emissions from wildfires, as well as atmospheric processing of organic aerosol precursor chemicals. More work is needed to support the management of the health and environmental risks of climate-induced changes in PM. We suggest five priorities for the research community to address based on the current state of the literature.

CORRESPONDING AUTHOR: Christopher Weaver, Office of Research and Development, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave. NW, Mail Stop 8601-P, Washington, DC 20460, E-mail: weaver.chris@epa.gov

Particulate matter (PM) air pollution is a serious public health issue for the United States. While there is a growing body of evidence that climate change will partially counter the effectiveness of future precursor emission reductions to reduce ozone (O3) air pollution, the links between PM and climate change are more complex and less understood. This paper discusses what we currently understand about the potential sensitivity of PM episodes to climate-change-related shifts in air pollution meteorology, in the broader context of the emissions and atmospheric chemistry drivers of PM. For example, initial studies have focused largely on annual average concentrations of inorganic aerosol species. However, the potential for future changes in the occurrence of PM episodes, and their underlying meteorological drivers, are likely more important to understand and remain highly uncertain. In addition, a number of other poorly understood factors interact with these likely critical meteorological changes. These include changes in emissions from wildfires, as well as atmospheric processing of organic aerosol precursor chemicals. More work is needed to support the management of the health and environmental risks of climate-induced changes in PM. We suggest five priorities for the research community to address based on the current state of the literature.

CORRESPONDING AUTHOR: Christopher Weaver, Office of Research and Development, U.S. Environmental Protection Agency, 1200 Pennsylvania Ave. NW, Mail Stop 8601-P, Washington, DC 20460, E-mail: weaver.chris@epa.gov
Save
  • Avise, J., J. Chen, B. Lamb, C. Wiedinmyer, A. Guenther, E. Salatheì, and C. Mass, 2009: Attribution of projected changes in summertime U.S. ozone and PM2.5 concentrations to global changes. Atmos. Chem. Phys., 9, 1111–1124.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., K. I. Hodges, and E. Roeckner, 2006: Storm tracks and climate change. J. Climate, 19, 3518–3543.

  • Berg, A. R., C. L. Heald, K. E. Huff Hartz, A. G. Hallar, A. J. H. Meddens, J. A. Hicke, J.-F. Lamarque, and S. Tilmes, 2013: The impact of bark beetle infestation on monoterpene emissions and secondary organic aerosol formation in western North America. Atmos. Chem. Phys., 13, 3149–3161.

    • Search Google Scholar
    • Export Citation
  • Bloomer, B. J., J. W. Stehr, C. A. Piety, R. J. Salawitch, and R. R. Dickerson, 2009: Observed relationships of ozone air pollution with temperature and emissions. Geophys. Res. Lett., 36, L09803, doi:10.1029/2009GL037308.

    • Search Google Scholar
    • Export Citation
  • Bond, T. C., and Coauthors, 2013: Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res., 118, 5380–5552, doi:10.1002/jgrd.50171.

    • Search Google Scholar
    • Export Citation
  • Bowden, J. H., T. L. Otte, C. G. Nolte, and M. J. Otte, 2012: Examining interior grid nudging techniques using two-way nesting in the WRF model for regional climate modeling. J. Climate, 25, 2805–2823.

    • Search Google Scholar
    • Export Citation
  • Carlton, A. G., B. J. Turpin, K. E. Altieri, S. P. Seitzinger, R. Mathur, S. J. Roselle, and R. J. Weber, 2008: CMAQ model performance enhanced when in-cloud secondary organic aerosol is included: comparisons of organic carbon predictions with measurements. Environ. Sci. Technol., 42, 8798–8802.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, doi:10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Charlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley Jr., J. E. Hansen, and D. J. Hofmann, 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423–430.

    • Search Google Scholar
    • Export Citation
  • Chen, J., J. Avise, A. Guenther, C. Wiedinmyer, E. Salathe, R. B. Jackson, and B. Lamb, 2009: Future land use and land cover influences in regional biogenic emissions and air quality in the United States. Atmos. Environ., 43, 5771–5780.

    • Search Google Scholar
    • Export Citation
  • Comrie, A. C., and B. Yarnal, 1992: Relationships between synoptic-scale atmospheric circulation and ozone concentrations in metropolitan Pittsburgh, Pennsylvania. Atmos. Environ., 26B, 301–312.

    • Search Google Scholar
    • Export Citation
  • Cusack, M., A. Alastuey, N. Pérez, J. Pey, and X. Querol, 2012: Trends of particulate matter (PM2.5) and chemical composition at a regional background site in the western Mediterranean over the last nine years (2002–2010). Atmos. Chem. Phys., 12, 8341–8357, doi:10.5194/acp-12-8341-2012.

    • Search Google Scholar
    • Export Citation
  • Dawson, J. P., P. J. Adams, and S. N. Pandis, 2007: Sensitivity of ozone to summertime climate in the eastern USA: A modeling case study. Atmos. Environ., 41, 1494–1511.

    • Search Google Scholar
    • Export Citation
  • Dawson, J. P., P. N. Racherla, B. H. Lynn, P. J. Adams, and S. N. Pandis, 2009: Impacts of climate change on regional and urban air quality in the eastern United States: Role of meteorology. J. Geophys. Res., 114, D05308, doi:10.1029/2008JD009849.

    • Search Google Scholar
    • Export Citation
  • Day, M. C., and S. N. Pandis, 2011: Predicted changes in summertime organic aerosols concentrations due to increased temperatures. Atmos. Environ., 45, 6546–6556.

    • Search Google Scholar
    • Export Citation
  • Dockery, D. W., C. A. Pope III, X. Xu, J. D. Spengler, J. H. Ware, M. E. Fay, B. G. Ferris Jr., and F. E. Speizer, 1993: An association between air pollution and mortality in six U.S. cities. N. Engl. J. Med., 329, 1753–1759.

    • Search Google Scholar
    • Export Citation
  • Duce, R. A., C. K. Unni, B. J. Ray, J. M. Prospero, and J. T. Merrill, 1980: Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific: Temporal variability. Science, 209, 1522–1524.

    • Search Google Scholar
    • Export Citation
  • Ervens, B. E., A. G. Carlton, B. J. Turpin, K. E. Altieri, S. M. Kreidenweis, and G. Feingold, 2008: Secondary organic aerosol yields from cloud-processing of isoprene oxidation products. Geophys. Res. Lett., 35, L02816, doi:10.1029/2007GL031828.

    • Search Google Scholar
    • Export Citation
  • Field, C. B., and Coauthors, 2012: Managing the risks of extreme events and disasters to advance climate change adaptation; Special report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 582 pp.

    • Search Google Scholar
    • Export Citation
  • Flannigan, M. D., K. A. Logan, B. D. Amiro, W. R. Skinner, and B. J. Stocks, 2005: Future area burned in Canada. Climatic Change, 72, 1–16.

    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234.

    • Search Google Scholar
    • Export Citation
  • Guenther, A., T. Karl, P. Harley, C. Wiedinmyer, P. I. Palmer, and C. Geron, 2006: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos. Chem. Phys., 6, 3181–3210.

    • Search Google Scholar
    • Export Citation
  • Hanna, A. F., and Coauthors, 2011: Associations between ozone and morbidity using the Spatial Synoptic Classification system. Environ. Health, 10, 49, doi:10.1186/1476-069X-10-49.

    • Search Google Scholar
    • Export Citation
  • Hansen, J., M. Sato, and R. Ruedy, 2012: Perception of climate change. Proc. Natl. Acad. Sci. USA, 109, E2415–E2423, doi:10.1073/pnas.1205276109.

    • Search Google Scholar
    • Export Citation
  • Heald, C. L., and Coauthors, 2008: Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change. J. Geophys. Res., 113, D05211, doi:10.1029/2007JD009092.

    • Search Google Scholar
    • Export Citation
  • Hessl, A. E., D. McKenzie, and R. Schellhaas, 2004: Drought and the Pacific decadal oscillation linked to fire occurrence in the inland Pacific Northwest. Ecol. Appl., 14, 425–442.

    • Search Google Scholar
    • Export Citation
  • Horton, D.E., Harshvardhan, and N. S. Diffenbaugh, 2012: Response of air stagnation frequency to anthropogenically enhanced radiative forcing. Environ. Res. Lett., 7, 044034, doi:10.1088/1748-9326/7/4/044034.

    • Search Google Scholar
    • Export Citation
  • Horváth, E., A. Hoffer, F. Sebök, C. Dobolyi, S. Szoboszlay, B. Kriszt, and A. Gelencsér, 2012: Experimental evidence for direct sesquiterpene emission from soils. J. Geophys. Res., 117, D15304, doi:10.1029/2012JD017781.

    • Search Google Scholar
    • Export Citation
  • Jacob, D. J., and D. A. Winner, 2009: Effect of climate change on air quality. Atmos. Environ., 43, 51–63.

  • Jimenez, J. L., and Coauthors, 2009: Evolution of organic aerosols in the atmosphere. Science, 326, 1525–1529.

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437–471.

  • Keywood, M., and Coauthors, 2013: Fire in the air: Biomass burning impacts in a changing climate. Crit. Rev. Environ. Sci. Technol., 43, 40–83.

    • Search Google Scholar
    • Export Citation
  • Lafon, C. W., and S. M. Quiring, 2012: Relationships of fire and precipitation regimes in temperature forests of the eastern United States. Earth Interact., 16, doi:10.1175/2012EI000442.1.

    • Search Google Scholar
    • Export Citation
  • Lam, Y. F., J. S. Fu, S. Wu, and L. J. Mickley, 2011: Impacts of future climate change and effects of biogenic emissions on surface ozone and particulate matter concentrations in the United States. Atmos. Chem. Phys., 11, 4789–4806, doi:10.5194/acp-11-4789-2011.

    • Search Google Scholar
    • Export Citation
  • Lambert, S. J., and J. C. Fyfe, 2006: Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: Results from the models participating in the IPCC diagnostic exercise. Climate Dyn., 26, 713–728.

    • Search Google Scholar
    • Export Citation
  • Lave, L. B., and E. P. Seskin, 1973: Air pollution and human health. Science, 169, 723–733.

  • Leibensperger, E. M., L. J. Mickley, and D. J. Jacob, 2008: Sensitivity of US air quality to mid-latitude cyclone frequency and implications of 1980–2006 climate change. Atmos. Chem. Phys., 8, 7075–7086.

    • Search Google Scholar
    • Export Citation
  • Leung, L. R., and W. I. Gustafson, 2005: Potential regional climate change and implications to U.S. air quality. Geophys. Res. Lett., 32, L16711, doi:10.1029/2005GL022911.

    • Search Google Scholar
    • Export Citation
  • Li, W., L. Li, R. Fu, Y. Deng, and H. Wang, 2011: Changes to the North Atlantic subtropical high and its role in the intensification of summer rainfall variability in the southeastern United States. J. Climate, 24, 1499–1506.

    • Search Google Scholar
    • Export Citation
  • Mahmud, A., M. Hixson, and M. Kleeman, 2012: Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change. Atmos. Chem. Phys., 12, 7453–7463.

    • Search Google Scholar
    • Export Citation
  • Manders, A. M. M., E. van Meijgaard, A. C. Mues, R. Kranenburg, L. H. van Ulft, and M. Schaap, 2012: The impact of differences in large-scale circulation output from climate models on the regional modeling of ozone and PM. Atmos. Chem. Phys., 12, 9441–9458, doi:10.5194/acp-12-9441-2012.

    • Search Google Scholar
    • Export Citation
  • Mickley, L. J., D. J. Jacob, B. D. Field, and D. Rind, 2004: Effects of future climate change on regional air pollution episodes in the United States. Geophys. Res. Lett., 31, L24013, doi:10.1029/2004GL021216.

    • Search Google Scholar
    • Export Citation
  • Monson, R. K., and Coauthors, 2007: Isoprene emission from terrestrial ecosystems in response to global change: Minding the gap between models and observations. Philos. Trans. Roy. Soc. London, A365, 1677–1695.

    • Search Google Scholar
    • Export Citation
  • Murphy, B., and S. N. Pandis, 2009: Simulating the formation of semivolatile primary and secondary organic aerosols in a regional chemical transport model. Environ. Sci. Technol., 43, 4722–4728.

    • Search Google Scholar
    • Export Citation
  • NRC, 2001: Global Air Quality: An Imperative for Long-Term Observational Strategies. National Academy Press, 41 pp.

  • NRC, 2004: Air Quality Management in the United States. National Academies Press, 401 pp.

  • Okin, G. S., and M. C. Reheis, 2002: An ENSO predictor of dust emission in the southwestern United States. Geophys. Res. Lett., 29 (9), doi:10.1029/2001GL014494.

    • Search Google Scholar
    • Export Citation
  • Pacifico, F., G. A. Folberth, C. D. Jones, S. P. Harrison, and W. J. Collins, 2012: Sensitivity of biogenic isoprene emissions to past, present, and future environmental conditions and implications for atmospheric chemistry. J. Geophys. Res., 117, D22302, doi:10.1029/2012JD018276.

    • Search Google Scholar
    • Export Citation
  • Park, R. J., D. J. Jacob, M. Chin, and R. V. Martin, 2003: Sources of carbonaceous aerosols over the United States and implications for natural v isibi lity. J. Geophys. Res., 108, 4355, doi:10.1029/2002JD003190.

    • Search Google Scholar
    • Export Citation
  • Pey, J., X. Querol, A. Alastuey, F. Forastiere, and M. Stafoggia, 2012: African dust outbreaks over the Mediterranean Basin during 2001–2011: PM10 concentrations, phenomenology and trends, and its relation with synoptic and mesoscale meteorology. Atmos. Chem. Phys. Discuss., 12, 28 195–28 235.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., U. Ulbrich, G. C. Leckebusch, T. Spangehl, M. Reyers, and S. Zacharias, 2007: Changes in storm track and cyclone activity in three SRES ensemble experiments with the ECHAM5/MPI-OM1 GCM. Climate Dyn., 29, 195–210.

    • Search Google Scholar
    • Export Citation
  • Pope, C. A., III, and Coauthors, 2002: Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution. J. Amer. Med. Assoc., 287, 1132–1141.

    • Search Google Scholar
    • Export Citation
  • Pope, C. A., III, M. Ezzati, and D. W. Dockery, 2009: Fine-particulate air pollution and life expectancy in the United States. N. Engl. J. Med., 360, 376–386.

    • Search Google Scholar
    • Export Citation
  • Possell, M., and C. N. Hewitt, 2011: Isoprene emissions from plants are mediated by atmospheric CO2 concentrations. Global Change Biol., 17, 1595–1610, doi:10.1111/j.1365-2486.2010.02306.x.

    • Search Google Scholar
    • Export Citation
  • Post, E. S., and Coauthors, 2012: Variation in estimated ozone-related health impacts of climate change due to modeling choices and assumptions. Environ. Health Perspect., 120, 1559–1564, doi:10.1289/ehp.1104271.

    • Search Google Scholar
    • Export Citation
  • Prospero, J. M., 1979: Mineral and sea-salt aerosol concentrations in various ocean regions. J. Geophys. Res., 84 (C2), 725–731.

  • Prospero, J. M., E. Bonatti, C. Schubert, and T. N. Carlson, 1970: Dust in the Caribbean atmosphere traced to an African dust storm. Earth Planet. Sci. Lett., 9, 287–293.

    • Search Google Scholar
    • Export Citation
  • Pye, H. O. T., H. Liao, S. Wu, L. J. Mickley, D. J. Jacob, D. K. Henze, and J. H. Seinfeld, 2009: Effect of changes in climate and emissions on future sulfate-nitrate-ammonium aerosol levels in the United States. J. Geophys. Res., 114, D01205, doi:10.1029/2008JD010701.

    • Search Google Scholar
    • Export Citation
  • Racherla, P. N., and P. J. Adams, 2006: Sensitivity of global tropospheric ozone and fine particulate matter concentrations to climate change. J. Geophys. Res., 111, D24103, doi:10.1029/2005JD006939.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, D. J., A. M. Fiore, V. Naik, L. W. Horowitz, S. J. McGinnis, and M. G. Schultz, 2012: Surface ozone-temperature relationships in the eastern US: A monthly climatology for evaluation chemistryclimate models. Atmos. Environ., 47, 142–153, doi:10.1016/j.atmosenv.2011.11.021.

    • Search Google Scholar
    • Export Citation
  • Ravishankara, A. R., J. P. Dawson, and D. A. Winner, 2012: New directions: Adapting air quality management to climate change: A must for planning. Atmos. Environ., 50, 387–389.

    • Search Google Scholar
    • Export Citation
  • Robinson, A. L., and Coauthors, 2007: Rethinking organic aerosols: Semivolatile emissions and photochemical aging. Science, 315, 1259–1262.

    • Search Google Scholar
    • Export Citation
  • Rosenstiel, T. N., M. J. Potosnak, K. L. Griffin, R. Fall, and R. K. Monson, 2003: Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature, 421, 256–259.

    • Search Google Scholar
    • Export Citation
  • Sacks, J. D., L. W. Stanek, T. J. Luben, D. O. Johns, B. J. Buckley, J. S. Brown, and M. Ross, 2011: Particulate matter-induced health effects: Who is susceptible? Environ. Health Perspect., 119, 446–454.

    • Search Google Scholar
    • Export Citation
  • Seager, R., and Coauthors, 2007: Model predictions of an imminent transition to a more arid climate in southwestern North America. Science, 316, 1181–1184.

    • Search Google Scholar
    • Export Citation
  • Spracklen, D. V., J. A. Logan, L. J. Mickley, R. J. Park, R. Yevich, A. L. Westerling, and D. A. Jaffe, 2007: Wildfires drive interannual variability of organic carbon aerosol in the western U.S. in summer. Geophys. Res. Lett., 34, L16816, doi:10.1029/2007GL030037.

    • Search Google Scholar
    • Export Citation
  • Spracklen, D. V., L. J. Mickley, J. A. Logan, R. C. Hudman, R. Yevich, M. D. Flannigan, and A. L. Westerling, 2009: Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States. J. Geophys. Res., 114, D20301, doi:10.1029/2008JD010966.

    • Search Google Scholar
    • Export Citation
  • Sillman, S., and P. J. Samson, 1995: Impact of temperature on oxidant photochemistry in urban, polluted rural, and remote environments. J. Geophys. Res., 100 (D6), 11 497–11 508.

    • Search Google Scholar
    • Export Citation
  • Sun, Z., Ü. Niinemets, K. Hüve, S. M. Noe, B. Rasulov, L. Copolovici, and V. Vislap, 2012: Enhanced isoprene emission capacity and altered light responsiveness in aspen grown under elevated atmospheric CO2 concentration. Global Change Biol., 18, 3423–3440, doi:10.1111/j.1365-2486.2012.02789.x.

    • Search Google Scholar
    • Export Citation
  • Tagaris, E., K. Manomaiphiboon, K.-J. Liao, L. R. Leung, J.-H. Woo, S. He, P. Amar, and A. G. Russell, 2007: Impacts of global climate change and emissions on regional ozone and fine particulate matter concentrations over the United States. J. Geophys. Res., 112, D14312, doi:10.1029/2006JD008262.

    • Search Google Scholar
    • Export Citation
  • Tai, A. P. K., L. J. Mickley, and D. J. Jacob, 2010: Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmos. Environ., 44, 3976–3984.

    • Search Google Scholar
    • Export Citation
  • Tai, A. P. K., L. J. Mickley, D. J. Jacob, E. M. Leibensperger, L. Zhang, J. A. Fisher, and H. O. T. Pye, 2012: Meteorological modes of variability for fine particulate matter (PM2.5) air quality in the United States: Implications for PM2.5 sensitivity to climate change. Atmos. Chem. Phys., 12, 3131–3145, doi:10.5194/acp-12-3131-2012.

    • Search Google Scholar
    • Export Citation
  • TF HTAP, 2011: Hemispheric transport of air pollution 2010. Part A: Ozone and particulate matter. F. Dententer, T. Keating, and H. Akimioto, Eds., Air Pollution Studies 17, United Nations Economic Commission for Europe, 304 pp.

    • Search Google Scholar
    • Export Citation
  • Tsigaridis, K., and M. Kanakidou, 2007: Secondary organic aerosol importance in the future atmosphere. Atmos. Environ., 41, 4682–4692.

    • Search Google Scholar
    • Export Citation
  • U.S. EPA, 2009a: Assessment of the impacts of global change on regional U.S. air quality: A synthesis of climate change impacts on ground-level ozone (an interim report of the U.S. EPA Global Change Research Program). U.S. Environmental Protection Agency Rep. EPA/600/R-07/094F, 131 pp.

    • Search Google Scholar
    • Export Citation
  • U.S. EPA, 2009b: Endangerment and cause or contribute findings for greenhouse gases under section 202(a) of the Clean Air Act. Federal Register Docket ID EPA-HQ-OAR-2009-0171, 52 pp.

    • Search Google Scholar
    • Export Citation
  • U.S. EPA, 2009c: Integrated science assessment for particulate matter (final report). U.S. Environmental Protection Agency EPA/600/R-08/139F, 2228 pp.

    • Search Google Scholar
    • Export Citation
  • Wang, J. X. L., and J. K. Angell, 1999. Air stagnation climatology for the United States (1948–1998). NOAA/Air Resources Laboratory ATLAS 1, 73 pp.

    • Search Google Scholar
    • Export Citation
  • Way, D. A., J.-P. Schnitzler, R. K. Monson, and R. B. Jackson, 2011: Enhanced isoprene-related tolerance of heat- and light-stressed photosynthesis at low, but not high, CO2 concentrations. Oecologia, 166, 273–282, doi:10.1007/s00442-011-1947-7.

    • Search Google Scholar
    • Export Citation
  • Weaver, C. P., and Coauthors, 2009: A preliminary synthesis of modeled climate change impacts on U.S. regional ozone concentrations. Bull. Amer. Meteor. Soc., 90, 1843–1863.

    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam, 2006: Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940–943.

    • Search Google Scholar
    • Export Citation
  • Wiedinmyer, C., X. Tie, A. Guenther, R. Neilson, and C. Granier, 2006: Future changes in biogenic isoprene emissions: How might they affect regional and global atmospheric chemistry? Earth Interact., 10, doi:10.1175/EI174.1.

    • Search Google Scholar
    • Export Citation
  • Winner, D. A., and G. R. Cass, 2001: Modeling the long-term frequency distribution of regional ozone concentrations using synthetic meteorology. Environ. Sci. Technol., 35, 3718–3726.

    • Search Google Scholar
    • Export Citation
  • Wu, S., L. J. Mickley, E. M. Leibensperger, D. J. Jacob, D. Rind, and D. G. Streets, 2008: Effects of 2000–2050 global change on ozone air quality in the United States. J. Geophys. Res., 113, D06302, doi:10.1029/2007JD008917.

    • Search Google Scholar
    • Export Citation
  • Wu, S., L. J. Mickley, J. O. Kaplan, and D. J. Jacob, 2012: Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century. Atmos. Chem. Phys., 12, 1597–1609, doi:10.5194/acp-12-1597-2012.

    • Search Google Scholar
    • Export Citation
  • Yue, X., L. J. Mickley, J. A. Logan, and J. O. Kaplan, 2013: Ensemble projections of wildfire activity and carbonaceous aerosol concentrations over the western United States in the mid-21st century. Atmos. Environ., 77, 767–780.

    • Search Google Scholar
    • Export Citation
  • Zhu, J., and X.-Z. Liang, 2013: Impacts of the Bermuda high on regional climate and ozone over the United States. J. Climate, 26, 1018–1032.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 1 0 0
Full Text Views 1025 290 15
PDF Downloads 763 176 9