Air–Sea Interactions from Westerly Wind Bursts During the November 2011 MJO in the Indian Ocean

James N. Moum College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by James N. Moum in
Current site
Google Scholar
PubMed
Close
,
Simon P. de Szoeke College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Simon P. de Szoeke in
Current site
Google Scholar
PubMed
Close
,
William D. Smyth College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by William D. Smyth in
Current site
Google Scholar
PubMed
Close
,
James B. Edson Department of Marine Sciences, University of Connecticut, Groton, Connecticut

Search for other papers by James B. Edson in
Current site
Google Scholar
PubMed
Close
,
H. Langley DeWitt NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington

Search for other papers by H. Langley DeWitt in
Current site
Google Scholar
PubMed
Close
,
Aurélie J. Moulin College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

Search for other papers by Aurélie J. Moulin in
Current site
Google Scholar
PubMed
Close
,
Elizabeth J. Thompson Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado

Search for other papers by Elizabeth J. Thompson in
Current site
Google Scholar
PubMed
Close
,
Christopher J. Zappa Ocean and Climate Physics Division, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Christopher J. Zappa in
Current site
Google Scholar
PubMed
Close
,
Steven A. Rutledge Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado

Search for other papers by Steven A. Rutledge in
Current site
Google Scholar
PubMed
Close
,
Richard H. Johnson Department of Atmospheric Sciences, Colorado State University, Fort Collins, Colorado

Search for other papers by Richard H. Johnson in
Current site
Google Scholar
PubMed
Close
, and
Christopher W. Fairall NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Christopher W. Fairall in
Current site
Google Scholar
PubMed
Close
Restricted access

The life cycles of three Madden–Julian oscillation (MJO) events were observed over the Indian Ocean as part of the Dynamics of the MJO (DYNAMO) experiment. During November 2011 near 0°, 80°E, the site of the research vessel Roger Revelle, the authors observed intense multiscale interactions within an MJO convective envelope, including exchanges between synoptic, meso, convective, and turbulence scales in both atmosphere and ocean and complicated by a developing tropical cyclone. Embedded within the MJO event, two bursts of sustained westerly wind (>10 m s−1; 0–8-km height) and enhanced precipitation passed over the ship, each propagating eastward as convectively coupled Kelvin waves at an average speed of 8.6 m s−1. The ocean response was rapid, energetic, and complex. The Yoshida–Wyrtki jet at the equator accelerated from less than 0.5 m s−1 to more than 1.5 m s−1 in 2 days. This doubled the eastward transport along the ocean's equatorial waveguide. Oceanic (subsurface) turbulent heat fluxes were comparable to atmospheric surface fluxes, thus playing a comparable role in cooling the sea surface. The sustained eastward surface jet continued to energize shear-driven entrainment at its base (near 100-m depth) after the MJO wind bursts subsided, thereby further modifying sea surface temperature for a period of several weeks after the storms had passed.

CORRESPONDING AUTHOR: James N. Moum, College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331-5503, E-mail: moum@coas.oregonstate.edu

The life cycles of three Madden–Julian oscillation (MJO) events were observed over the Indian Ocean as part of the Dynamics of the MJO (DYNAMO) experiment. During November 2011 near 0°, 80°E, the site of the research vessel Roger Revelle, the authors observed intense multiscale interactions within an MJO convective envelope, including exchanges between synoptic, meso, convective, and turbulence scales in both atmosphere and ocean and complicated by a developing tropical cyclone. Embedded within the MJO event, two bursts of sustained westerly wind (>10 m s−1; 0–8-km height) and enhanced precipitation passed over the ship, each propagating eastward as convectively coupled Kelvin waves at an average speed of 8.6 m s−1. The ocean response was rapid, energetic, and complex. The Yoshida–Wyrtki jet at the equator accelerated from less than 0.5 m s−1 to more than 1.5 m s−1 in 2 days. This doubled the eastward transport along the ocean's equatorial waveguide. Oceanic (subsurface) turbulent heat fluxes were comparable to atmospheric surface fluxes, thus playing a comparable role in cooling the sea surface. The sustained eastward surface jet continued to energize shear-driven entrainment at its base (near 100-m depth) after the MJO wind bursts subsided, thereby further modifying sea surface temperature for a period of several weeks after the storms had passed.

CORRESPONDING AUTHOR: James N. Moum, College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331-5503, E-mail: moum@coas.oregonstate.edu
Save
  • Balaguru, K., P. Chang, R. Saravan, L. R. Leung, M. Liu, and J.-S. Hsieh, 2012: Ocean barrier layers' effect on tropical cyclone intensification. Proc. Natl. Acad. Sci. USA, 109, 14 34314 347, doi:10.1073/pnas.1201364109.

    • Search Google Scholar
    • Export Citation
  • Bates, T. S., P. K. Quinn, D. J. Coffman, J. E. Johnson, and A. M. Middlebrook, 2005: Dominance of organic aerosols in the marine boundary layer over the Gulf of Maine during NEAQS 2002 and their role in aerosol light scattering. J. Geophys. Res., 110, D18202, doi:10.1029/2005JD005797.

    • Search Google Scholar
    • Export Citation
  • Bell, T. L., and R. Suhasini, 1994: Principal modes of variation of rain-rate probability distribution. J. Appl. Meteor., 33, 10671078, doi:10.1175/1520-0450(1994)0332.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Borge, J. C. N., K. Reichert, and J. Dittmer, 1999: Use of nautical radar as a wave monitoring instrument. Coastal Eng., 37, 331342, doi:10.1016/S0378-3839(99)00032-0.

    • Search Google Scholar
    • Export Citation
  • Cifuentes-Lorenzen, A., J. B. Edson, C. J. Zappa, and L. Bariteau, 2013: A multisensor comparison of ocean wave frequency spectra from a research vessel during the Southern Ocean Gas Exchange Experiment. J. Atmos. Oceanic Technol., 30, 29072925, doi:10.1175/JTECH-D-12-00181.1.

    • Search Google Scholar
    • Export Citation
  • DeWitt, H. L., D. J. Coffman, K. J. Schulz, W. A. Brewer, T. S. Bates, and P. K. Quinn, 2013: Atmospheric aerosol properties over the equatorial Indian Ocean and the impact of the Madden-Julien oscillation. J. Geophys. Res., 118, 57365749, doi:10.1002/jgrd.50419.

    • Search Google Scholar
    • Export Citation
  • Fairall, C. W., E. F. Bradley, J. S. Godfrey, J. B. Edson, G. S. Young, and G. A. Wick, 1996: Cool skin and warm layer effects on the sea surface temperature. J. Geophys. Res., 101, 12951308, doi:10.1029/95JC03190.

    • Search Google Scholar
    • Export Citation
  • Gottschalck, J., P. E. Roundy, C. J. Schreck III, A. Vintzileos, and C. Zhang, 2013: Large-scale atmospheric and oceanic conditions during the 2011–12 DYNAMO field campaign. Mon. Wea. Rev., 141, 41734196, doi:10.1175/MWR-D-13-00022.1.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., and P. E. Ciesielski, 2013: Structure and properties of Madden–Julian oscillations deduced from DYNAMO sounding arrays. J. Atmos. Sci., 70, 31573179, doi:10.1175/JAS-D-13-065.1.

    • Search Google Scholar
    • Export Citation
  • Kiladis, G. N., M. C. Wheeler, P. T. Haertel, K. H. Straub, and P. E. Roundy, 2009: Convectively coupled equatorial waves. Rev. Geophys., 47, RG2003, doi:10.1029/2008RG000266.

    • Search Google Scholar
    • Export Citation
  • Köhler, H., 1936: The nucleus in and the growth of hydroscopic droplets. Trans. Faraday Soc., 32, 11521161, doi:10.1039/tf9363201152.

    • Search Google Scholar
    • Export Citation
  • Madden, R., and P. Julian, 1971: Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28, 702708, doi:10.1175/1520-0469(1971)0282.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R., and P. Julian, 1972: Description of global-scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci., 29, 11091123, doi:10.1175/1520-0469(1972)0292.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J., and G. R. Foltz, 2013: Intraseasonal variations in the surface heat layer balance of the central equatorial Indian Ocean: The importance of zonal advection and vertical mixing. Geophys. Res. Lett., 40, 27372741, doi:10.1002/grl.50536.

    • Search Google Scholar
    • Export Citation
  • McPhaden, M. J. , and Coauthors, 2009: RAMA—The Research Moored Array for African–Asian–Australian Monsoon Analysis and Prediction. Bull. Amer. Meteor. Soc., 90, 459480, doi:10.1175/2008BAMS2608.1.

    • Search Google Scholar
    • Export Citation
  • Moreno, G., L. Dagorn, G. Sancho, and D. Itano, 2007: Fish behaviour from fishers' knowledge: The case study of tropical tuna around drifting fish aggregating devices (DFADs). Can. J. Fish. Aquat. Sci., 64, 15171528, doi:10.1139/f07-113.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., M. C. Gregg, R.-C. Lien, and M. E. Carr, 1995: Comparison of turbulent kinetic energy dissipation rates from two ocean microstructure profilers. J. Oceanic Atmos. Technol., 12, 346366, doi:10.1175/1520-0426(1995)0122.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moum, J. N., R.-C. Lien, A. Perlin, J. N. Nash, M. C. Gregg, and P. J. Wiles, 2009: Sea surface cooling at the equator by subsurface mixing in tropical instability waves. Nat. Geosci., 2, 761765, doi:10.1038/ngeo657.

    • Search Google Scholar
    • Export Citation
  • Nagura, M., and M. J. McPhaden, 2008: The dynamics of zonal current variations in the central equatorial Indian Ocean. Geophys. Res. Lett., 35, L23603, doi:10.1029/2008GL035961.

    • Search Google Scholar
    • Export Citation
  • Petters, M. D., and S. M. Kreidenweis, 2007: A single particle representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys., 7, 19611971, doi:10.5194/acp-7-1961-2007.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., U. Lohman, G. B. Raga, C. D. O'Dowd, M. Kulmala, S. Fuzzi, A. Reissell, and M. O. Andreae, 2008: Flood or drought: How do aerosols affect precipitation? Science, 321, 13091313, doi:10.1126/science.1160606.

    • Search Google Scholar
    • Export Citation
  • Roundy, P. E., 2008: Analysis of convectively-coupled Kelvin waves in the Indian Ocean MJO. J. Atmos. Sci., 65, 13421359, doi:10.1175/2007JAS2345.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., R. A. Houze, and I. Kraucunas, 2004: The tropical dynamical response to latent heating estimates derived from TRMM precipitation radar. J. Atmos. Sci., 61, 13411358, doi:10.1175/1520-0469(2004)0612.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Short, D. A., P. A. Kucera, B. S. Ferrier, J. C. Gerlach, S. A. Rutledge, and O. W. Thiele, 1997: Shipboard radar rainfall patterns within the TOGA COARE IFA. Bull. Amer. Meteor. Soc., 78, 28172836, doi:10.1175/1520-0477(1997)0782.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smyth, W. D., J. N. Moum, and J. D. Nash, 2011: Narrowband high-frequency oscillations at the equator. Part II: Properties of shear instabilities. J. Phys. Oceanogr., 41, 412428, doi:10.1175/2010JPO4451.1.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze, and S. A. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, doi:10.1175/1520-0450(1995)0342.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straub, K. H., and G. N. Kiladis, 2002: Observations of a convectively coupled Kelvin wave in the eastern Pacific ITCZ. J. Atmos. Sci., 59, 3053, doi:10.1175/1520-0469(2002)0592.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wyatt, L. R., and Coauthors, 2003: Validation and intercomparisons of wave measurements and models during the EuroROSE experiments. Coastal Eng., 48, 128, doi:10.1016/S0378-3839(02)00157-6.

    • Search Google Scholar
    • Export Citation
  • Wyrtki, K., 1973: An equatorial jet in the Indian Ocean. Science, 181, 262264, doi:10.1126/science.181.4096.262.

  • Yoneyama, K., C. Zhang, and C. N. Long, 2013: Tracking pulses of the Madden–Julian oscillation. Bull. Amer. Meteor. Soc., 94, 18711891, doi:10.1175/BAMS-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Yoshida, K., 1959: A theory of the Cromwell Current (the equatorial undercurrent) and of the equatorial upwelling—An interpretation in a similarity to a coastal circulation. J. Oceanogr. Soc. Japan, 15, 159170.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. A., and R. A. Houze, 1998: The natural variability of precipitating clouds over the western Pacific warm pool. Quart. J. Roy. Meteor. Soc., 124, 5399, doi:10.1002/qj.49712454504.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, doi:10.1029/2004RG000158.

  • Zhang, C., 2013: Madden–Julian oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94, 18491870, doi:10.1175/BAMS-D-12-00026.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1669 909 52
PDF Downloads 644 195 33