• Black, P. G., 1983: Ocean temperature changes induced by tropical cyclones. Ph.D. thesis, The Pennsylvania State University, 278 pp.

  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, doi:10.1175/BAMS-88-3-357.

    • Search Google Scholar
    • Export Citation
  • Centurioni, L. R., 2010: Observations of large-amplitude nonlinear internal waves from a drifting array: Instruments and methods. J. Atmos. Oceanic Technol., 27, 17111731, doi:10.1175/2010JTECHO774.1.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., , J. F. Price, , W. Zhao, , M. A. Donelan, , and E. J. Walsh, 2007: The CBLAST-hurricane program and the next-generation fully coupled atmosphere–wave–ocean models for hurricane research and prediction. Bull. Amer. Meteor. Soc., 88, 311317, doi:10.1175/BAMS-88-3-311.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., , W. Zhao, , M. A. Donelan, , and H. L. Tolman, 2013: Directional wind–wave coupling in fully coupled atmosphere–wave ocean models: Results from CBLAST-hurricane. J. Atmos. Sci., 70, 31983215, doi:10.1175/JAS-D-12-0157.1.

    • Search Google Scholar
    • Export Citation
  • D'Asaro, E. A., , and C. McNeil, 2007: Air–sea gas exchange at extreme wind speeds measured by autonomous oceanographic floats. J. Mar. Syst., 66, 92109, doi:10.1016/j.jmarsys.2006.06.007.

    • Search Google Scholar
    • Export Citation
  • D'Asaro, E. A., , T. B. Sanford, , P. P. Niiler, , and E. J. Terrill, 2007: Cold wake of Hurricane Frances. Geophys. Res. Lett., 34, L15609, doi:10.1029/2007GL030160.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1988: The maximum intensity of hurricanes. J. Atmos. Sci., 45, 11431155, doi:10.1175/1520-0469(1988)0452.0.CO;2.

  • Emanuel, K. A., 1999: Thermodynamic control of hurricane intensity. Nature, 401, 665669, doi:10.1038/44326.

  • Eriksen, C. C., , T. J. Osse, , R. D. Light, , T. Wen, , T. W. Lehman, , P. L. Sabin, , and A. M. Chiodi, 2001: Seaglider: A long-range autonomous underwater vehicle for oceanographic research. IEEE J. Oceanic Eng., 26, 424436, doi:10.1109/48.972073.

    • Search Google Scholar
    • Export Citation
  • Foster, R. C., 2013: Signature of large aspect ratio roll vortices in synthetic aperture radar images of tropical cyclones. Oceanography, 26, 5867, doi:10.5670/oceanog.2013.31.

    • Search Google Scholar
    • Export Citation
  • Graber, H. C., , E. A. Terray, , M. A. Donelan, , W. M. Drennan, , J. C. Van Leer, , and D. B. Peters, 2000: ASIS—A new air–sea interaction spar buoy: Design and performance at sea. J. Atmos. Oceanic Technol., 17, 708720, doi:10.1175/1520-0426(2000)0172.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hazelton, A. T., , and R. E. Hart, 2013: Hurricane eyewall slope as determined from airborne radar ref lectivity data: Composites and case studies. Wea. Forecasting, 28, 368386, doi:10.1175/WAF-D-12-00037.1.

    • Search Google Scholar
    • Export Citation
  • Hong, X., , S. W. Chang, , S. Raman, , L. K. Shay, , and R. Hodur, 2000: The interaction between Hurricane Opal (1995) and a warm core ring in the Gulf of Mexico. Mon. Wea. Rev., 128, 13471365, doi:10.1175/1520-0493(2000)1282.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horstmann, J., , W. Koch, , S. Lehner, , and R. Tonboe, 2000: Wind retrieval over the ocean using synthetic aperture radar with C-band HH polarization. IEEE Trans. Geosci. Remote Sens., 38, 21222131, doi:10.1109/36.868871.

    • Search Google Scholar
    • Export Citation
  • Horstmann, J., , D. R. Thompson, , F. Monaldo, , S. Iris, , and H. C. Graber, 2005: Can synthetic aperture radars be used to estimate hurricane force winds? Geophys. Res. Lett., 32, L22801, doi:10.1029/2005GL023992.

    • Search Google Scholar
    • Export Citation
  • Horstmann, J., , C. Wackerman, , S. Falchetti, , and S. Maresca, 2013: Tropical cyclone winds retrieved from synthetic aperture radars. Oceanography, 26, 4657, doi:10.5670/oceanog.2013.30.

    • Search Google Scholar
    • Export Citation
  • Jaimes, B., , and L. K. Shay, 2009: Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Wea. Rev., 137, 41884207, doi:10.1175/2009MWR2849.1.

    • Search Google Scholar
    • Export Citation
  • Jaimes, B., , and L. K. Shay, 2010: Near-inertial wave wake of Hurricanes Katrina and Rita over mesoscale oceanic eddies. J. Phys. Oceanogr., 40, 13201337, doi:10.1175/2010JPO4309.1.

    • Search Google Scholar
    • Export Citation
  • Knapp, K. R., , M. C. Kruk, , D. H. Levinson, , H. J. Diamond, , and C. J. Neumann, 2010: The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying tropical cyclone data. Bull. Amer. Meteor. Soc., 91, 363376, doi:10.1175/2009BAMS2755.1.

    • Search Google Scholar
    • Export Citation
  • Lee, C.-Y, , and S. S. Chen, 2014: Stable boundary layer and its impact on tropical cyclone structure in a coupled atmosphere–ocean model. Mon. Wea. Rev., 142, 19271944, doi:10.1175/MWR-D-13-00122.1.

    • Search Google Scholar
    • Export Citation
  • Leipper, D. F., 1967: Observed ocean conditions and Hurricane Hilda, 1964. J. Atmos. Sci., 24, 182186, doi:10.1175/1520-0469(1967)0242.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Le Traon, P. Y., , F. Nadal, , and N. Ducet, 1998: An improved mapping method of multisatellite altimeter data. J. Atmos. Oceanic Technol., 15, 522534, doi:10.1175/1520-0426(1998)0152.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lévy, M., , M. Lengaigne, , L. Bopp, , E. M. Vincent, , G. Madec, , C. Ethé, , D. Kumar, , and V. V. S. S. Sarma, 2012: Contribution of hurricanes to the air–sea CO2 flux: A global view. Global Biogeochem. Cycles, 26, GB2001, doi:10.1029/2011GB004145.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., , C.-C. Wu, , K. A. Emanuel, , I. H. Lee, , C.-R. Wu, , and I.-F. Pun, 2005: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy. Mon. Wea. Rev., 133, 26352649, doi:10.1175/MWR3005.1.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., , C.-C. Wu, , I. F. Pun, , and D. S. Ko, 2008: Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I: Ocean features and the category 5 typhoons' intensification. Mon. Wea. Rev., 136, 32883306, doi:10.1175/2008MWR2277.1.

    • Search Google Scholar
    • Export Citation
  • Lin, I.-I., and Coauthors, 2013: An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett., 40, 18781882, doi:10.1002/grl.50091.

    • Search Google Scholar
    • Export Citation
  • Mrvaljevic, R. K., and Coauthors, 2014: Observations of the cold wake of Typhoon Fanapi (2010). Geophys. Res. Lett., doi:10.1002/grl.50096, in press.

    • Search Google Scholar
    • Export Citation
  • Niiler, P. P., 2001: The world ocean surface circulation. Ocean Circulation and Climate, G. Siedler et al., Eds., Academic Press, 193204.

    • Search Google Scholar
    • Export Citation
  • Patoux, J., , R. C. Foster, , and R. A. Brown, 2008: An evaluation of scatterometer-derived oceanic surface pressure fields. J. Appl. Meteor. Climatol., 47, 835852, doi:10.1175/2007JAMC1683.1.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., , E. W. Uhlhorn, , and J. D. Kepert, 2009: Estimating maximum surface winds from hurricane reconnaissance measurements. Wea. Forecasting, 24, 868883, doi:10.1175/2008WAF2007087.1.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., 1981: Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153175, doi:10.1175/1520-0485(1981)0112.0.CO;2.

  • Price, J. F., 2009: Metrics of hurricane–ocean interaction: Vertically-integrated or vertically-averaged ocean temperature? Ocean Sci., 5, 351368, doi:10.5194/os-5-351-2009.

    • Search Google Scholar
    • Export Citation
  • Price, J. F., , J. Morzel, , and P. P. Niller, 2008: Warming of SST in the cold wake of a moving hurricane. J. Geophys. Res., 113, C07010, doi:10.1029/2007JC004393.

    • Search Google Scholar
    • Export Citation
  • Pudov, V., , and S. Petrichenko, 2000: Trail of a typhoon in the salinity field of the ocean upper layer. Atmos. Ocean Phys., 36, 700706.

    • Search Google Scholar
    • Export Citation
  • Pun, I.-F., , I.-I. Lin, , C.-R. Wu, , D.-S. Ko, , and W. T. Liu, 2007: Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon-intensity forecast. IEEE Trans. Geosci. Remote Sens., 45, 16161630, doi:10.1109/TGRS.2007.895950.

    • Search Google Scholar
    • Export Citation
  • Pun, I.-F., , Y.-T. Chang, , I.-I. Lin, , T. Y. Tang, , and R.-C. Lien, 2011: Typhoon–ocean interaction in the western North Pacific, Part 2. Oceanography, 24, 3241, doi:10.5670/oceanog.2011.92.

    • Search Google Scholar
    • Export Citation
  • Romeiser, R., , J. Horstmann, , M. J. Caruso, , and H. C. Graber, 2013: A descalloping post-processor for ScanSAR images of ocean scenes. IEEE Trans. Geosci. Remote Sens., 51, 32593272, doi:10.1109/TGRS.2012.2222648.

    • Search Google Scholar
    • Export Citation
  • Sanford, T. B., , J. F. Price, , and J. B. Girton, 2011: Upper-ocean response to Hurricane Frances (2004) observed by profiling EM-APEX floats. J. Phys. Oceanogr., 41, 10411056, doi:10.1175/2010JPO4313.1.

    • Search Google Scholar
    • Export Citation
  • Schmidtko, S., , G. C. Johnson, , and J. M. Lyman, 2013: MIMOC: A global monthly isopycnal upper-ocean climatology with mixed layers. J. Geophys. Res., 118, 16581672, doi:10.1002/jgrc.20122.

    • Search Google Scholar
    • Export Citation
  • Schulz-Stellenfleth, J., , and S. Lehner, 2004: Measurement of 2D sea surface elevation fields using complex synthetic aperture radar data. IEEE Trans. Geosci. Remote Sens., 42, 11491160, doi:10.1109/TGRS.20O4.826811.

    • Search Google Scholar
    • Export Citation
  • Shay, L. K., 2010: Air–sea interactions in tropical cyclones. Global Perspectives on Tropical Cyclones: From Science to Mitigation, J. C. L. Chan & and J. D. Kepert , Eds., World Scientific, 93131.

    • Search Google Scholar
    • Export Citation
  • Uhlhorn, E. W., , P. G. Black, , J. L. Franklin, , M. Goodberlet, , J. Carswell, , and A. S. Goldstein, 2007: Hurricane surface wind measurements from an operational stepped frequency microwave radiometer. Mon. Wea. Rev., 135, 30703085, doi:10.1175/MWR3454.1.

    • Search Google Scholar
    • Export Citation
  • Wackerman, C. C., , C. L. Rufenach, , R. A. Shuchman, , J. A. Johannessen, , and K. L. Davidson, 1996: Wind vector retrieval using ERS-1 synthetic aperture radar imagery. IEEE Trans. Geosci. Remote Sens., 34, 13431352, doi:10.1109/36.544558.

    • Search Google Scholar
    • Export Citation
  • Wright, C. W., and Coauthors, 2001: Hurricane directional wave spectrum spatial variation in the open ocean. J. Phys. Oceanogr., 31, 24722488, doi:10.1175/1520-0485(2001)0312.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, C.-C., and Coauthors, 2005: Dropwindsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR): An overview. Bull. Amer. Meteor. Soc., 86, 787790, doi:10.1175/BAMS-86-6-787.

    • Search Google Scholar
    • Export Citation
  • Yablonsky, R. M., , and I. Ginis, 2013: Impact of a warm ocean eddy's circulation on hurricane-induced sea surface cooling with implications for hurricane intensity. Mon. Wea. Rev., 141, 9971021, doi:10.1175/MWR-D-12-00248.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 214 214 91
PDF Downloads 137 137 49

Impact of Typhoons on the Ocean in the Pacific

View More View Less
  • 1 Applied Physics Laboratory, and School of Oceanography, University of Washington, Seattle, Washington
  • 2 Science Application International Corporation, Inc., and Naval Research Laboratory, Monterey, California
  • 3 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • 4 Institute of Oceanography, National Taiwan University, Taipei, Taiwan
  • 5 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • 6 Applied Physics Laboratory, University of Washington, Seattle, Washington
  • 7 Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
  • 8 Naval Postgraduate School, Monterey, California
  • 9 Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California
  • 10 Applied Physics Laboratory, and School of Oceanography, University of Washington, Seattle, Washington
  • 11 Department of Atmospheric Sciences, National Taiwan University, and Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
  • 12 Applied Physics Laboratory, and School of Oceanography, University of Washington, Seattle, Washington
  • 13 Institute of Oceanography, National Taiwan University, Taipei, Taiwan
  • 14 Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
© Get Permissions
Restricted access

Tropical cyclones (TCs) change the ocean by mixing deeper water into the surface layers, by the direct air–sea exchange of moisture and heat from the sea surface, and by inducing currents, surface waves, and waves internal to the ocean. In turn, the changed ocean influences the intensity of the TC, primarily through the action of surface waves and of cooler surface temperatures that modify the air–sea fluxes. The Impact of Typhoons on the Ocean in the Pacific (ITOP) program made detailed measurements of three different TCs (i.e., typhoons) and their interaction with the ocean in the western Pacific. ITOP coordinated meteorological and oceanic observations from aircraft and satellites with deployments of autonomous oceanographic instruments from the aircraft and from ships. These platforms and instruments measured typhoon intensity and structure, the underlying ocean structure, and the long-term recovery of the ocean from the storms' effects with a particular emphasis on the cooling of the ocean beneath the storm and the resulting cold wake. Initial results show how different TCs create very different wakes, whose strength and properties depend most heavily on the nondimensional storm speed. The degree to which air–sea fluxes in the TC core were reduced by ocean cooling varied greatly. A warm layer formed over and capped the cold wakes within a few days, but a residual cold subsurface layer persisted for 10–30 days.

CORRESPONDING AUTHOR: E. A. D'Asaro, University of Washington, Applied Physics Laboratory, 1013 NE 40th St., Seattle, WA 98105, E-mail: dasaro@apl.washington.edu

Tropical cyclones (TCs) change the ocean by mixing deeper water into the surface layers, by the direct air–sea exchange of moisture and heat from the sea surface, and by inducing currents, surface waves, and waves internal to the ocean. In turn, the changed ocean influences the intensity of the TC, primarily through the action of surface waves and of cooler surface temperatures that modify the air–sea fluxes. The Impact of Typhoons on the Ocean in the Pacific (ITOP) program made detailed measurements of three different TCs (i.e., typhoons) and their interaction with the ocean in the western Pacific. ITOP coordinated meteorological and oceanic observations from aircraft and satellites with deployments of autonomous oceanographic instruments from the aircraft and from ships. These platforms and instruments measured typhoon intensity and structure, the underlying ocean structure, and the long-term recovery of the ocean from the storms' effects with a particular emphasis on the cooling of the ocean beneath the storm and the resulting cold wake. Initial results show how different TCs create very different wakes, whose strength and properties depend most heavily on the nondimensional storm speed. The degree to which air–sea fluxes in the TC core were reduced by ocean cooling varied greatly. A warm layer formed over and capped the cold wakes within a few days, but a residual cold subsurface layer persisted for 10–30 days.

CORRESPONDING AUTHOR: E. A. D'Asaro, University of Washington, Applied Physics Laboratory, 1013 NE 40th St., Seattle, WA 98105, E-mail: dasaro@apl.washington.edu
Save