• Aguilar, E., , I. Auer, , M. Brunet, , T. C. Peterson, , and J. Wieringa, 2003: Guidelines on climate metadata and homogenization. WCDMP Tech Doc. 53, WMO Tech. Doc. 1186, 55 pp.

    • Search Google Scholar
    • Export Citation
  • Balmaseda, M. A., , K. Mogensen, , and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system ORAS4. Quart. J. Roy. Meteor. Soc., 139, 11321161, doi:10.1002/qj.2063.

    • Search Google Scholar
    • Export Citation
  • Bates, J. J., , and J. L. Privette, 2012: A maturity model for assessing the completeness of climate data records. Eos, Trans. Amer. Geophys. Union, 93, 441, doi:10.1029/2012EO440006.

    • Search Google Scholar
    • Export Citation
  • Bird, I., 2011: Computing for the Large Hadron Collider. Ann. Rev. Nucl. Part. Sci., 61, 99118, doi:10.1146/annurev-nucl-102010-130059.

    • Search Google Scholar
    • Export Citation
  • Blunden, J., , and D. S. Arndt, Eds., 2013: State of the climate in 2012. Bull. Amer. Meteor. Soc., 94 (Suppl.), S1S238, doi:10.1175/2013BAMSStateoftheClimate.1.

    • Search Google Scholar
    • Export Citation
  • Ceccherini, G., , N. Gobron, , and M. Robustelli, 2013: Harmonization of fraction of absorbed photosynthetically active radiation (FAPAR) from Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and Medium Resolution Imaging Spectrometer Instrument (MERIS). Remote Sens., 5, 33573376, doi:10.3390/rs5073357.

    • Search Google Scholar
    • Export Citation
  • CEOS, 2008: The Earth observation handbook: Climate change special edition 2008. ESA Rep. SP-1315, 265 pp.

  • Christy, J. R., , R. W. Spencer, , W. B. Norris, , W. D. Braswell, , and D. E. Parker, 2003: Error estimates of version 5.0 of MSU-AMSU bulk atmospheric temperatures. J. Atmos. Oceanic Technol., 20, 613629, doi:10.1175/1520-0426(2003)202.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cogley, J. G., and Coauthors, 2011: Glossary of glacier mass balance and related terms. IHP-VII Hydrology Tech. Doc. 86, IACS Contribution 2, 114 pp. [Available online at http://unesdoc.unesco.org/images/0019/001925/192525e.pdf.]

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137, 128, doi:10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., , E. Källén, , A. J. Simmons, , and L. Haimberger, 2011: Comments on “Reanalyses suitable for characterizing long-term trends.” Bull. Amer. Meteor. Soc., 92, 6570, doi:10.1175/2010BAMS3070.1.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., , M. Balmaseda, , G. Balsamo, , R. Engelen, , A. J. Simmons, , and J.-N. Thépaut, 2014: Toward a consistent reanalysis of the climate system. Bull. Amer. Meteor. Soc., in press, doi:10.1175/BAMSD-13-00043.1.

    • Search Google Scholar
    • Export Citation
  • Doherty, S. J., and Coauthors, 2009: Lessons learned from the IPCC AR4: Scientific developments needed to understand, predict, and respond to climate change. Bull. Amer. Meteor. Soc., 90, 497513, doi:10.1175/2008BAMS2643.1.

    • Search Google Scholar
    • Export Citation
  • Dowell, M., and Coauthors, 2013: Strategy towards an architecture for climate monitoring from space. CEOS, WMO, and CGMS Rep., 39 pp. [Available online at www.wmo.int/pages/prog/sat/documents/ARCH_strategy-climate-architecture-space.pdf.]

    • Search Google Scholar
    • Export Citation
  • ESA, 2013: Response by ESA to GCOS—Results of the climate change initiative requirements analysis. ESA Rep. CCI-PRGM-EOPS-TN-13-0008, 84 pp. [Available online at http://46.137.76.174/?q=webfm_send/80.]

    • Search Google Scholar
    • Export Citation
  • EUMETSAT, 2011: EUMETSAT strategy: A global operational satellite agency at the heart of Europe. EUMETSAT Rep. COR.02-v1, 28 pp. [Available online at www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_BR_COR02_EN&RevisionSelectionMethod=LatestReleased&Rendition=Web.]

    • Search Google Scholar
    • Export Citation
  • European Union, 2010: Regulation (EU) No 911/2010 of the European Parliament and of the council of 22 September 2010 on the European Earth monitoring programme (GMES) and its initial operations (2011 to 2013). EU Doc. OJ L 276, 20.10.2010, 10 pp [Available online at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:32010R0911:EN:NOT.]

    • Search Google Scholar
    • Export Citation
  • Folland, C. K., , D. Parker, , R. W. Reynolds, , S. C. Sherwood, , and P. W. Thorne, 2006: What measures can be taken to improve the understanding of observed changes? Temperature trends in the lower atmosphere: Steps for understanding and reconciling differences, T. R. Karl et al., Eds., Climate Change Science Program and the Subcommittee on Global Change Research Rep., 119128.

    • Search Google Scholar
    • Export Citation
  • Fowler, C., 2008: The Svalbard Global Seed Vault: Securing the future for agriculture. Global Crop Diversity Trust Rep., 28 pp. [Available online at www.croptrust.org/documents/Svalbard%20opening/New%20EMBARGOED-Global%20Crop%20Diversity%20Trust%20Svalbard%20Paper.pdf.]

    • Search Google Scholar
    • Export Citation
  • Gardner, A. S., and Coauthors, 2013: A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340, 852857, doi:10.1126/science.1234532.

    • Search Google Scholar
    • Export Citation
  • GCOS, 1995: Plan for the Global Climate Observing System, version 1.0. GCOS Rep. 14, 49 pp. [Available online at www.wmo.int/pages/prog/gcos/Publications/gcos-14.pdf.]

    • Search Google Scholar
    • Export Citation
  • GCOS, 1997: GCOS/GTOS plan for terrestrial climate-related observations, version 2.0. GCOS Rep. 32, 130 pp. [Available online at www.wmo.int/pages/prog/gcos/Publications/gcos-32.pdf.]

    • Search Google Scholar
    • Export Citation
  • GCOS, 2003: Second report on the adequacy of the global observing systems for climate in support of the UNFCCC. GCOS Rep. 82, 85 pp. [Available online at www.wmo.int/pages/prog/gcos/Publications/gcos-82_2AR.pdf.]

    • Search Google Scholar
    • Export Citation
  • GCOS, 2004: Implementation plan for the global observing system for climate in support of the UNFCCC. GCOS Rep. 92, 153 pp. [Available online at www.wmo.int/pages/prog/gcos/Publications/gcos-92_GIP.pdf.]

    • Search Google Scholar
    • Export Citation
  • GCOS, 2006: Systematic Observation requirements for satellite-based products for climate: Supplemental details to the satellite-based component of the implementation plan for the global observing system for climate in support of the UNFCCC. GCOS Rep. 107, 103 pp. [Available online at www.wmo.int/pages/prog/gcos/Publications/gcos-107.pdf.]

    • Search Google Scholar
    • Export Citation
  • GCOS, 2007: GCOS AOPC/TOPC Joint Working Group on Land-Surface/Atmosphere Issues (WG-LSA). GCOS Tech. Paper 1, 18 pp. [Available online at www.wmo.int/pages/prog/gcos/Publications/GCOS-TP1.pdf.]

    • Search Google Scholar
    • Export Citation
  • GCOS, 2009: Progress report on the implementation of the global observing system for climate in support of the UNFCCC 2004–2008. GCOS Rep. 129, 112 pp. [Available online at www.wmo.int/pages/prog/gcos/Publications/gcos-129.pdf.]

    • Search Google Scholar
    • Export Citation
  • GCOS, 2010a: Implementation plan for the global observing system for climate in support of the UNFCCC (2010 update). GCOS Rep. 138, 186 pp. [Available online at www.wmo.int/pages/prog/gcos/Publications/gcos-138.pdf.]

    • Search Google Scholar
    • Export Citation
  • GCOS, 2010b: Guideline for the generation of datasets and products meeting GCOS requirements. GCOS Rep. 143, 12 pp. [Available online at www.wmo.int/pages/prog/gcos/Publications/gcos-143.pdf.]

    • Search Google Scholar
    • Export Citation
  • GCOS, 2011: Systematic observation requirements for satellite- based products for climate 2011 update: Supplemental details to the satellite-based component of the “Implementation plan for the global observing system for climate in support of the UNFCCC (2010 update). GCOS Rep. 154, 138 pp. [Available online at www.wmo.int/pages/prog/gcos/Publications/gcos-154.pdf.]

    • Search Google Scholar
    • Export Citation
  • Gleckler, P., , K. E. Taylor, , and C. Doutriaux, 2008: Performance metrics for climate models. J. Geophys. Res., 113, D06104, doi:10.1029/2007JD008972.

    • Search Google Scholar
    • Export Citation
  • Gómez-Navarro, J. J., , J. P. Montávez, , S. Jerez, , P. Jiménez-Guerrero, , and E. Zorita, 2012: What is the role of the observational dataset in the evaluation and scoring of climate models? Geophys. Res. Lett., 39, L24701, doi:10.1029/2012GL054206.

    • Search Google Scholar
    • Export Citation
  • Hewison, T., , X. Wu, , F. Yu, , Y. Tahara, , X. Hu, , D. Kim, , and M. Koenig, 2013: GSICS inter-calibration of infrared channels of geostationary imagers using Metop/IASI. IEEE Trans. Geosci. Remote Sens., 51, 11601170, doi:10.1109/TGRS.2013.2238544.

    • Search Google Scholar
    • Export Citation
  • Hollingsworth, A., and Coauthors, 2005: The transformation of earth-system observations into information of socio-economic value in GEOSS. Quart. J. Roy. Meteor. Soc., 131, 34933512, doi:10.1256/qj.05.181.

    • Search Google Scholar
    • Export Citation
  • Hollmann, R., and Coauthors, 2013: The ESA climate change initiative: Satellite data records for essential climate variables. Bull. Amer. Meteor. Soc., 94, 15411552, doi:10.1175/BAMS-D-11-00254.1.

    • Search Google Scholar
    • Export Citation
  • Hoskins, B., 2013: The potential for skill across the range of the seamless weather-climate prediction problem: A stimulus for our science. Quart. J. Roy. Meteor. Soc., 139, 573584, doi:10.1002/qj.1991.

    • Search Google Scholar
    • Export Citation
  • Houghton, J., , J. Townshend, , K. Dawson, , P. Mason, , J. Zillman, , and A. Simmons, 2012: The GCOS at 20 years: the origin, achievement and future development of the Global Climate Observing System. Weather, 67 (9), doi:10.1002/wea.1964.

    • Search Google Scholar
    • Export Citation
  • ICOS, 2013: A European infrastructure dedicated to high-precision monitoring of greenhouse gas fluxes. Integrated Carbon Observation System Rep., 4 pp. [Available online at www.icos-infrastructure.eu/sites/icos-infrastructure-transition.eu/files/Icos4pager_06_03_2012.pdf.]

    • Search Google Scholar
    • Export Citation
  • ICSU, 2013: ICSU World Data System Implementation Plan 2014–2018, 10 pp, [Available online at www.icsu-wds.org/files/wds-strategic-plan-201420132018.]

    • Search Google Scholar
    • Export Citation
  • Karl, T., Ed., 1996: Long-Term Climate Monitoring by the Global Climate Observing System. Kluwer Academic, 518 pp.

  • Keeling, C. D., 1998: Rewards and penalties of monitoring the earth. Annu. Rev. Energy Environ., 23, 2582, doi:10.1146/annurev.energy.23.1.25.

    • Search Google Scholar
    • Export Citation
  • Kent, E. C., , and A. Kaplan, 2006: Toward estimating climatic trends in SST. Part III: Systematic biases. J. Atmos. Oceanic Technol., 23, 487500, doi:10.1175/JTECH1845.1.

    • Search Google Scholar
    • Export Citation
  • Lattanzio, A., and Coauthors, 2013: Land surface albedo from geostationary satellites: A multi-agency collaboration within SCOPE-CM. Bull. Amer. Meteor. Soc., 94, 205214, doi:10.1175/BAMS-D-11-00230.1.

    • Search Google Scholar
    • Export Citation
  • Lawrimore, J. H., , M. J. Menne, , B. E. Gleason, , C. N. Williams, , D. B. Wuertz, , R. S. Vose, , and J. Rennie, 2011: An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J. Geophys. Res., 116, D19121, doi:10.1029/2011JD016187.

    • Search Google Scholar
    • Export Citation
  • Le Treut, H., , R. Somerville, , U. Cubasch, , Y. Ding, , C. Mauritzen, , A. Mokssit, , T. Peterson, , and M. Prather, 2007: Historical overview of climate change. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 93127.

    • Search Google Scholar
    • Export Citation
  • Los, S. O., and Coauthors, 2000: A global 9-yr biophysical land surface dataset from NOAA AVHRR data. J. Hydrometeor., 1, 183199, doi:10.1175/1525-7541(2000)0012.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Major Groups, 2012: Rio+20 common statement. Stakeholder Forum of the Earth Summit 2012 Discussion Paper, 2 pp. [Available online at www.stakeholderforum.org/fileadmin/files/Major%20Groups%20common%20statement.pdf.]

    • Search Google Scholar
    • Export Citation
  • Mears, C. A., , M. C. Schabel, , and F. J. Wentz, 2003: A reanalysis of the MSU channel 2 tropospheric temperature record. J. Climate, 16, 36503664, doi:10.1175/1520-0442(2003)0162.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meehl, G. A., and Coauthors, 2009: Decadal prediction: Can it be skillful? Bull. Amer. Meteor. Soc., 90, 14671485, doi:10.1175/2009BAMS2778.1.

    • Search Google Scholar
    • Export Citation
  • MeteoSwiss, cited 2013: Capacity Building and Twinning for Climate Observing Systems (CATCOS)—Glacier monitoring. [Available online at www.meteoschweiz.admin.ch/web/en/meteoswiss/international_affairs/international_projects/CATCOS/terrestrial_domain.html.]

    • Search Google Scholar
    • Export Citation
  • Miller, B. R., , R. F. Weiss, , P. K. Salmeh, , T. Tanhua, , B. R. Greally, , J. Mühle, , and P. G. Simmonds, 2008: Medusa: A sample preconcentration and GC/MS detector system for in situ measurements of atmospheric trace halocarbons, hydrocarbons, and sulfur compounds. Anal. Chem., 80, 15361545, doi:10.1021/ac702084k.

    • Search Google Scholar
    • Export Citation
  • Mühle, J., , A. L. and Coauthors, 2010: Perfluorocarbons in the global atmosphere: Tetrafluoromethane, hexafluoroethane, and octafluoropropane. Atmos. Chem. Phys., 10, 51455164, doi:10.5194/acp-10-5145-2010.

    • Search Google Scholar
    • Export Citation
  • Nelson, B., 2009: Empty archives. Nature, 461, 160163, doi:10.1038/461160a.

  • Nilsson, M., , and H. Dalkmann, 2001: Decision making and strategic environmental assessment. J. Environ. Assess. Policy Manage., 3, 305, doi:10.1142/S1464333201000728.

    • Search Google Scholar
    • Export Citation
  • Nisbet, E., 2007: Cinderella science. Nature, 450, 789790, doi:10.1038/450789a.

  • NRC, 1994: Ocean-Atmosphere Observations Supporting Short-Term Climate Predictions. National Academy Press, 51 pp.

  • Pereira, H. M., and Coauthors, 2013: Essential biodiversity variables. Science, 339, 277278, doi:10.1126/science.1229931.

  • Peterson, T. C., , and J. F. Griffiths, 1997: Historical African data. Bull. Amer. Meteor. Soc., 78, 28692872.

  • Peterson, T. C., , H. Daan, , and P. Jones, 1997: Initial selection of a GCOS surface network. Bull. Amer. Meteor. Soc., 78, 21452152, doi:10.1175/1520-0477(1997)0782.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peterson, T. C., , K. P. Gallo, , J. Lawrimore, , T. W. Owen, , A. Huang, , and D. A. McKittrick, 1999: Global rural temperature trends. Geophys. Res. Lett., 26, 329332, doi:10.1029/1998GL900322.

    • Search Google Scholar
    • Export Citation
  • Schulz, J., and Coauthors, 2009: Operational climate monitoring from space: The EUMETSAT Satellite Application Facility on Climate Monitoring (CMSAF). Atmos. Chem. Phys., 9, 16871709, doi:10.5194/acp-9-1687-2009.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., and Coauthors, 2009: Reference upper-air observations for climate: Rationale, progress, and plans. Bull. Amer. Meteor. Soc., 90, 361369, doi:10.1175/2008BAMS2540.1.

    • Search Google Scholar
    • Export Citation
  • Seiz, G., , and N. Foppa, 2007: National Climate Observing System. MeteoSwiss and ProClim Rep., 95 pp. [Available online at www.meteosuisse.admin.ch/web/en/meteoswiss/international_affairs/gcos/uebersicht_klimabeobachtung/nationales_klimabeobachtungssystem.Par.0027.DownloadFile.tmp/nationalclimateobservingsystem.pdf.]

    • Search Google Scholar
    • Export Citation
  • Shapiro, M., and Coauthors, 2010: An Earth-system prediction initiative for the twenty-first century. Bull. Amer. Meteor. Soc., 91, 13771388, doi:10.1175/2010BAMS2944.1.

    • Search Google Scholar
    • Export Citation
  • Simmons, A. J., , K. M. Willett, , P. D. Jones, , P. W. Thorne, , and D. P. Dee, 2010: Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res., 115, D01110, doi:10.1029/2009JD012442.

    • Search Google Scholar
    • Export Citation
  • Smith, S. L., , J. Throop, , and A. G. Lewkowicz, 2012: Recent changes in climate and permafrost temperatures at forested and polar desert sites in northern Canada. Can. J. Earth Sci., 49, 914924, doi:10.1139/e2012-019.

    • Search Google Scholar
    • Export Citation
  • Spencer, R. W., , and J. R. Christy, 1990: Precise monitoring of global temperature trends from satellites. Science, 247, 15581562, doi:10.1126/science.247.4950.1558.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., and Coauthors, 2013: Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX Radiation Panel. Bull. Amer. Meteor. Soc., 94, 10311049, doi:10.1175/BAMS-D-12-00117.1.

    • Search Google Scholar
    • Export Citation
  • Thorne, P. W., , J. R. Lanzante, , T. C. Peterson, , D. J. Seidel, , and K. P. Shine, 2010: Tropospheric temperature trends: History of an ongoing controversy. Wiley Interdiscip. Rev.: Climate Change, 2, 6688, doi:10.1002/wcc.80.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 1995: Long-term climate monitoring by the Global Climate Observing System. Climatic Change, 31, 163180, doi:10.1007/BF01095144.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and Coauthors, 2012: Challenges of a sustained climate observing system. Climate Science for Serving Society: Research, Modelling and Prediction Priorities, J. W. Hurrell & and G. Asrar , Eds., Springer, 485 pp.

    • Search Google Scholar
    • Export Citation
  • Uhlir, P. F., , R. S. Chen, , J. I. Gabrynowicz, , and K. Janssen, 2009: Towards implementation of the Global Earth Observation System of Systems data sharing principles. J. Space Law, 35, 201290.

    • Search Google Scholar
    • Export Citation
  • UN, cited 2012: The future we want. – United Nations General Assembly Resolution 66/288. [Available online at http://sustainabledevelopment.un.org/futurewewant.html.]

    • Search Google Scholar
    • Export Citation
  • UNESCO, 1972: Convention concerning the protection of the world cultural and natural heritage. United Nations Educational, Scientific and Cultural Organisation, 17 pp. [Available online at http://whc.unesco.org/archive/convention-en.pdf.]

    • Search Google Scholar
    • Export Citation
  • UNESCO, 2012: Framework for ocean observing. Task Team for an Integrated Framework for Sustained Ocean Observing Rep. INF-1284, 28 pp, doi:10.5270/OceanObs09-FOO.

    • Search Google Scholar
    • Export Citation
  • UNFCCC, 2004: Global observing systems for climate. Report of the Conference of the Parties on its ninth session, held at Milan from 1 to 12 December 2003, 20–22 [Available online at http://unfccc.int/resource/docs/cop9/06a01.pdf#page=20.]

    • Search Google Scholar
    • Export Citation
  • UNFCCC, 2008: Reporting on global observing systems for climate. Report of the Conference of the Parties on its thirteenth session, held in Bali from 3 to 15 December 2007, 17 pp. [Available online at http://unfccc.int/resource/docs/2007/cop13/eng/06a02.pdf#page=1.

    • Search Google Scholar
    • Export Citation
  • WCRP, 2011: Report of WOAP Workshop on Evaluation of Satellite-Related Global Climate Datasets. WCRP Informal Rep. 33/2011, GCOS-153, 44 pp. [Available online at http://wcrp-climate.org/documents/ECV_Wksp_WCRP_Report.pdf.]

    • Search Google Scholar
    • Export Citation
  • WGMS, 2008: Global glacier changes: Facts and figures. UNEP World Glacier Monitoring Service Rep., 88 pp. [Available online at www.grid.unep.ch/glaciers/pdfs/glaciers.pdf.]

    • Search Google Scholar
    • Export Citation
  • Widlowski, J.-L., 2010: On the bias of instantaneous FAPAR estimates in open-canopy forests. Agric. For. Meteor., 150, 15011522, doi:10.1016/j.agrformet.2010.07.011.

    • Search Google Scholar
    • Export Citation
  • Willett, K. M., , C. N. Williams Jr., , R. J. H. Dunn, , P. W. Thorne, , S. Bell, , M. de Podesta, , P. D. Jones, , and D. E. Parker, 2013: HadISDH: an updateable land surface specific humidity product for climate monitoring. Climate Past, 9, 657677, doi:10.5194/cp-9-657-2013.

    • Search Google Scholar
    • Export Citation
  • WMO, 2009: Better climate information for a better future. WMO Secretariat World Climate Conference-3 Third Announcement, 24 pp.

  • WMO, 2011a: Climate knowledge for action: A global framework for climate services, empowering the most vulnerable. World Meteorological Organization Rep. 1065, 248 pp. [Available online at www.wmo.int/hlt-gfcs/downloads/HLT_book_full.pdf.]

    • Search Google Scholar
    • Export Citation
  • WMO, 2011b: Guide to climatological practices. World Meteorological Organization Rep. 100, 117 pp. [Available online at www.wmo.int/pages/prog/wcp/ccl/documents/WMO_100_en.pdf.]

    • Search Google Scholar
    • Export Citation
  • WMO, 2012: WMO Integrated Global Observing System—Final report of the Fifth WMO Workshop on the Impact of Various Observing Systems on Numerical Weather Prediction. WMO Tech. Rep. 2012-1, 25 pp. [Available online at www.wmo.int/pages/prog/www/OSY/Meetings/NWP5_Sedona2012/Final_Report.pdf.]

    • Search Google Scholar
    • Export Citation
  • WMO, 2013: The global climate 2001–2010: A decade of climate extremes. World Meteorological Organization Rep. 1103, 119 pp. [Available online at http://library.wmo.int/pmb_ged/wmo_1103_en.pdf.]

    • Search Google Scholar
    • Export Citation
  • Wunsch, C., , R. W. Schmitt, , and D. J. Baker, 2013: Climate change as an intergenerational problem. Proc. Natl. Acad. Sci. USA, 110, 44354436, doi:10.1073/pnas.1302536110.

    • Search Google Scholar
    • Export Citation
  • Zemp, M., and Coauthors, 2013: Reanalysing glacier mass balance measurement series. Cryosphere, 7, 12271245, doi:10.5194/tc-7-1227-2013.

    • Search Google Scholar
    • Export Citation
  • Zhang Y., , T. Sachs, , C. Li & , and J. Boike , 2012. Upscaling methane f luxes from closed chambers to eddy covariance based on a permafrost biogeochemistry integrated model. Global Change Biol., 18, 14281440, doi:10.1111/j.1365-2486.2011.02587.x.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 426 426 136
PDF Downloads 306 306 112

The Concept of Essential Climate Variables in Support of Climate Research, Applications, and Policy

View More View Less
  • 1 World Meteorological Organization, Geneva, Switzerland
  • 2 European Commission Joint Research Centre, Ispra, Italy
  • 3 NOAA/National Climatic Data Center, Asheville, North Carolina
  • 4 Global Climate Observing System Secretariat, World Meteorological Organization, Geneva, Switzerland
  • 5 European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom
  • 6 University of Zurich, Zurich, Switzerland
© Get Permissions
Restricted access

Climate research, monitoring, prediction, and related services rely on accurate observations of the atmosphere, land, and ocean, adequately sampled globally and over sufficiently long time periods. The Global Climate Observing System, set up under the auspices of United Nations organizations and the International Council for Science to help ensure the availability of systematic observations of climate, developed the concept of essential climate variables (ECVs). ECV data records are intended to provide reliable, traceable, observation-based evidence for a range of applications, including monitoring, mitigating, adapting to, and attributing climate changes, as well as the empirical basis required to understand past, current, and possible future climate variability. The ECV concept has been broadly adopted worldwide as the guiding basis for observing climate, including by the United Nations Framework Convention on Climate Change (UNFCCC), WMO, and space agencies operating Earth observation satellites.

This paper describes the rationale for these ECVs and their current selection, based on the principles of feasibility, relevance, and cost effectiveness. It also provides a view of how the ECV concept could evolve as a guide for rational and evidence-based monitoring of climate and environment. Selected examples are discussed to highlight the benefits, limitations, and future evolution of this approach.

The article is intended to assist program managers to set priorities for climate observation, dataset generation and related research: for instance, within the emerging Global Framework for Climate Services (GFCS). It also helps the observation community and individual researchers to contribute to systematic climate observation, by promoting understanding of ECV choices and the opportunities to influence their evolution.

*CURRENT AFFILIATION: South African National Space Agency, Pretoria, South Africa

CORRESPONDING AUTHOR: Stephan Bojinski, World Meteorological Organization, 7bis Avenue de la Paix, CP 2300, 1211 Geneva 2, Switzerland, E-mail: sbojinski@wmo.int

Climate research, monitoring, prediction, and related services rely on accurate observations of the atmosphere, land, and ocean, adequately sampled globally and over sufficiently long time periods. The Global Climate Observing System, set up under the auspices of United Nations organizations and the International Council for Science to help ensure the availability of systematic observations of climate, developed the concept of essential climate variables (ECVs). ECV data records are intended to provide reliable, traceable, observation-based evidence for a range of applications, including monitoring, mitigating, adapting to, and attributing climate changes, as well as the empirical basis required to understand past, current, and possible future climate variability. The ECV concept has been broadly adopted worldwide as the guiding basis for observing climate, including by the United Nations Framework Convention on Climate Change (UNFCCC), WMO, and space agencies operating Earth observation satellites.

This paper describes the rationale for these ECVs and their current selection, based on the principles of feasibility, relevance, and cost effectiveness. It also provides a view of how the ECV concept could evolve as a guide for rational and evidence-based monitoring of climate and environment. Selected examples are discussed to highlight the benefits, limitations, and future evolution of this approach.

The article is intended to assist program managers to set priorities for climate observation, dataset generation and related research: for instance, within the emerging Global Framework for Climate Services (GFCS). It also helps the observation community and individual researchers to contribute to systematic climate observation, by promoting understanding of ECV choices and the opportunities to influence their evolution.

*CURRENT AFFILIATION: South African National Space Agency, Pretoria, South Africa

CORRESPONDING AUTHOR: Stephan Bojinski, World Meteorological Organization, 7bis Avenue de la Paix, CP 2300, 1211 Geneva 2, Switzerland, E-mail: sbojinski@wmo.int
Save