• Barlow, M., 2011: Influence of hurricane-related activity on North American extreme precipitation. Geophys. Res. Lett., 38, L04705, doi:10.1029/2010GL046258.

    • Search Google Scholar
    • Export Citation
  • Bove, M. C., , J. B. Elsner, , C. W. Landsea, , X. Niu, , and J. J. O'Brien, 1998: Effect of El Niño on U.S. landfalling hurricanes, revisited. Bull. Amer. Meteor. Soc., 79, 24772482, doi:10.1175/1520-0477(1998)0792.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Camargo, S. J., , K. A. Emanuel, , and A. H. Sobel, 2007: Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. J. Climate, 20, 48194834, doi:10.1175/JCLI4282.1.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 2008: Assessment of flood losses in the U.S. J. Contemp. Water Res. Educ., 138, 3844, doi:10.1111/j.1936-704X.2008.00007.x.

    • Search Google Scholar
    • Export Citation
  • Colbert, A. J., , and B. J. Soden, 2012: Climatological variations in North Atlantic tropical cyclone tracks. J. Climate, 25, 657673, doi:10.1175/JCLI-D-11-00034.1.

    • Search Google Scholar
    • Export Citation
  • Czajkowski, J., , G. Villarini, , E. Michel-Kerjan, , and J. A. Smith, 2013: Determining tropical cyclone inland flooding loss on a large scale through a new flood peak ratio-based methodology. Environ. Res. Lett., 8, 044056, doi:10.1088/1748-9326/8/4/044056.

    • Search Google Scholar
    • Export Citation
  • Elsberry, R., 2002: Predicting hurricane landfall precipitation: Optimistic and pessimistic views from the Symposium on Precipitation Extremes. Bull. Amer. Meteor. Soc., 83, 13331339.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., 2003: Tracking hurricanes. Bull. Amer. Meteor. Soc., 84, 353356, doi:10.1175/BAMS-84-3-353.

  • Elsner, J. B., , K. B. Liu, , and B. Kocker, 2000: Spatial variations in major U.S. hurricane activity: Statistics and a physical mechanism. J. Climate, 13, 22932305, doi:10.1175/1520-0442(2000)0132.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., , X. Niu, , and T. H. Jagger, 2004: Detecting shifts in hurricane rates using a Markov chain Monte Carlo approach. J. Climate, 17, 26522666, doi:10.1175/1520-0442(2004)017<2652:DSIHRU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Groisman, P. Ya., , R. W. Knight, , T. R. Karl, , D. R. Easterling, , B. Sun, , and J. H. Lawrimore, 2004: Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations. J. Hydrometeor., 5, 6485, doi:10.1175/1525-7541(2004)0052.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gupta, V. K., , O. J. Mesa, , and D. R. Dawdy, 1994: Multiscaling theory of flood peaks: Regional quantile analysis. Water Resour. Res., 30 (12), 34053421, doi:10.1029/94WR01791.

    • Search Google Scholar
    • Export Citation
  • Hart, R. E., , and J. L. Evans, 2001: A climatology of the extratropical transition of Atlantic tropical cyclones. J. Climate, 14, 546564, doi:10.1175/1520-0442(2001)0142.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hellin, J., , M. Haigh, , and F. Marks, 1999: Rainfall characteristics of Hurricane Mitch. Nature, 399, 316, doi:10.1038/20577.

  • Jonkman, S. N., , B. Maaskant, , E. Boyd, , and M. L. Levitan, 2009: Loss of life caused by the flooding of New Orleans after Hurricane Katrina: Analysis of the relationship between flood characteristics and mortality. Risk Anal., 29 (5), 676698, doi:10.1111/j.1539-6924.2008.01190.x.

    • Search Google Scholar
    • Export Citation
  • Kim, H.-M., , P. J. Webster, , and J. A. Curry, 2009: Impact of shifting patterns of Pacific Ocean warming on North Atlantic tropical cyclones. Science, 325, 7780, doi:10.1126/science.1174062.

    • Search Google Scholar
    • Export Citation
  • Knight, D. B., , and R. E. Davis, 2009: Contribution of tropical cyclones to extreme rainfall events in the southeastern United States. J. Geophys. Res., 114, D23102, doi:10.1029/2009JD012511.

    • Search Google Scholar
    • Export Citation
  • Knutson, T. R., and Coauthors, 2010: Tropical cyclones and climate change. Nat. Geosci., 3, 157163, doi:10.1038/ngeo779.

  • Knutson, T. R., and Coauthors, 2013: Dynamical downscaling projections of twenty-first-century Atlantic hurricane activity: CMIP3 and CMIP5 model-based scenarios. J. Climate, 26, 65916617, doi:10.1175/JCLI-D-12-00539.1.

    • Search Google Scholar
    • Export Citation
  • Konrad, C. E., , and L. B. Perry, 2010: Relationships between tropical cyclones and heavy rainfall in the Carolina region of the USA. Int. J. Climatol., 30, 522534.

    • Search Google Scholar
    • Export Citation
  • Kossin, J. P., , S. J. Camargo, , and M. Sitkowski, 2010: Climate modulation of North Atlantic hurricane tracks. J. Climate, 23, 30573076, doi:10.1175/2010JCLI3497.1.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., , D. R. Easterling, , D. A. R. Kristovich, , B. Gleason, , L. Stoecker, , and R. Smith, 2010: Recent increases in U.S. heavy precipitation associated with tropical cyclones. Geophys. Res. Lett., 37, L24706, doi:10.1029/2010GL045164.

    • Search Google Scholar
    • Export Citation
  • Larkin, N. K., , and D. E. Harrison, 2005: On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys. Res. Lett., 32, L13705, doi:10.1029/2005GL022738.

    • Search Google Scholar
    • Export Citation
  • Larson, J., , Y. Zhou, , and R. W. Higgins, 2005: Characteristics of landfalling tropical cyclones in the United States and Mexico: Climatology and interannual variability. J. Climate, 18, 12471262, doi:10.1175/JCLI3317.1.

    • Search Google Scholar
    • Export Citation
  • Latif, M., , N. Keenlyside, , and J. Bader, 2007: Tropical sea surface temperature, vertical wind shear, and hurricane development. Geophys. Res. Lett., 34, L01710, doi:10.1029/2006GL027969.

    • Search Google Scholar
    • Export Citation
  • Mendelsohn, R., , K. Emanuel, , S. Chonabayashi, , and L. Bakkensen, 2012: The impact of climate change on global tropical cyclone damage. Nat. Climate Change, 2, 205209, doi:10.1038/nclimate1357.

    • Search Google Scholar
    • Export Citation
  • National Weather Service, 2012: Definitions and general terminology. National Weather Service Manual 10-950, Operations and Services, Hydrologic Services Program, NWSPD 10-9, 5 pp. [Available online at www.nws.noaa.gov/directives/sym/pd01009050curr.pdf.]

    • Search Google Scholar
    • Export Citation
  • Peduzzi, P., , B. Chatenoux, , H. Dao, , A. De Bono, , C. Herold, , J. Kossin, , F. Mouton, , and O. Nordbeck, 2012: Global trends in tropical cyclone risk. Nat. Climate Change, 2, 289294, doi:10.1038/nclimate1410.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., 2009: United States hurricane landfalls and damages: Can one- to five-year predictions beat climatology? Environ. Hazards, 8, 187200, doi:10.3763/ehaz.2009.0017.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., , J. Gratz, , C. W. Landsea, , D. Collins, , M. A. Saunders, , and R. Musulin, 2008: Normalized hurricane damage in the United States: 1900–2005. Nat. Hazards Rev., 9 (1), 2942, doi:10.1061/(ASCE)1527-6988(2008)9:1(29).

    • Search Google Scholar
    • Export Citation
  • Rappaport, E. N., 2000: Loss of life in the United States associated with recent Atlantic tropical cyclones. Bull. Amer. Meteor. Soc., 81, 20652073, doi:10.1175/1520-0477(2000)0812.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rowe, S. T., , and G. Villarini, 2013: Flooding associated with predecessor rain events over the Midwest United States. Environ. Res. Lett., 8, 024007, doi:10.1088/1748-9326/8/2/024007.

    • Search Google Scholar
    • Export Citation
  • Shepherd, J. M., , A. Grundstein, , and T. L. Mote, 2007: Quantifying the contribution of tropical cyclones to extreme rainfall along the coastal southeastern United States. Geophys. Res. Lett., 34, L23810, doi:10.1029/2007GL031694.

    • Search Google Scholar
    • Export Citation
  • Smith, J. A., , G. Villarini, , and M. L. Baeck, 2011: Mixture distributions and the climatology of extreme rainfall and flooding in the eastern United States. J. Hydrometeor., 12, 294309, doi:10.1175/2010JHM1242.1.

    • Search Google Scholar
    • Export Citation
  • Sturdevant-Rees, P. L., , J. A. Smith, , J. Morrison, , and M. L. Baeck, 2001: Tropical storms and the flood hydrology of the central Appalachians. Water Resour. Res., 37 (8), 21432168, doi:10.1029/2000WR900310.

    • Search Google Scholar
    • Export Citation
  • Tippett, M. K., , S. J. Camargo, , and A. H. Sobel, 2011: A Poisson regression index for tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Climate, 24, 23352357, doi:10.1175/2010JCLI3811.1.

    • Search Google Scholar
    • Export Citation
  • U.S. Department of Commerce, Service Assessment Hurricane Irene, August 21–30, 2011. 129 pp. [Available online at www.nws.noaa.gov/om/assessments/pdfs/Irene2012.pdf.]

    • Search Google Scholar
    • Export Citation
  • Vecchi, G. A., , and B. J. Soden, 2007: Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature, 450, 10661070, doi:10.1038/nature06423.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and J. A. Smith, 2010: Flood peak distributions for the eastern United States. Water Resour. Res., 46, W06504, doi:10.1029/2009WR008395.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , and J. A. Smith, 2013: Flooding in Texas: Examination of temporal changes and impacts of tropical cyclones. J. Amer. Water Resour. Assoc., 49 (4), 825837, doi:10.1111/jawr.12042.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , G. A. Vecchi, , and J. A. Smith, 2010: Modeling of the dependence of tropical storm counts in the North Atlantic basin on climate indices. Mon. Wea. Rev., 138, 26812705, doi:10.1175/2010MWR3315.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , J. A. Smith, , M. L. Baeck, , T. Marchok, , and G. A. Vecchi, 2011: Characterization of rainfall distribution and flooding associated with U.S. landfalling tropical cyclones: Analyses of Hurricanes Frances, Ivan, and Jeanne (2004). J. Geophys. Res., 116, D23116, doi:10.1029/2011JD016175.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., , G. A. Vecchi, , and J. A. Smith, 2012: U.S. landfalling and North Atlantic hurricanes: Statistical modeling of their frequencies and ratios. Mon. Wea. Rev., 140, 4465, doi:10.1175/MWR-D-11-00063.1.

    • Search Google Scholar
    • Export Citation
  • Vimont, D. J., , and J. P. Kossin, 2007: The Atlantic meridional mode and hurricane activity. Geophys. Res. Lett., 34, L07709, doi:10.1029/2007GL029683.

    • Search Google Scholar
    • Export Citation
  • Zandbergen, P., 2009: Exposure of US counties to Atlantic tropical storms and hurricanes, 1851–2003. Nat. Hazards, 48, 8399, doi:10.1007/s11069-008-9250-6.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 122 122 51
PDF Downloads 54 54 21

North Atlantic Tropical Cyclones and U.S. Flooding

View More View Less
  • 1 IIHR–Hydroscience & Engineering, The University of Iowa, Iowa City, Iowa
  • 2 Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey
  • 3 Geophysical Fluid Dynamics Laboratory, National Oceanic and Atmospheric Administration, Princeton, New Jersey
© Get Permissions
Restricted access

Riverine flooding associated with North Atlantic tropical cyclones (TCs) is responsible for large societal and economic impacts. The effects of TC flooding are not limited to the coastal regions, but affect large areas away from the coast, and often away from the center of the storm. Despite these important repercussions, inland TC flooding has received relatively little attention in the scientific literature, although there has been growing media attention following Hurricanes Irene (2011) and Sandy (2012). Based on discharge data from 1981 to 2011, the authors provide a climatological view of inland flooding associated with TCs, leveraging the wealth of discharge measurements collected, archived, and disseminated by the U.S. Geological Survey (USGS). Florida and the eastern seaboard of the United States (from South Carolina to Maine and Vermont) are the areas that are the most susceptible to TC flooding, with typical TC flood peaks that are 2 to 6 times larger than the local 10-yr flood peak, causing major flooding. A secondary swath of extensive TC-induced flooding in the central United States is also identified. These results indicate that flooding from TCs is not solely a coastal phenomenon but affects much larger areas of the United States, as far inland as Illinois, Wisconsin, and Michigan. Moreover, the authors highlight the dependence of the frequency and magnitude of TC flood peaks on large-scale climate indices, and the role played by the North Atlantic Oscillation and the El Niño–Southern Oscillation phenomenon (ENSO), suggesting potential sources of extended-range predictability.

CORRESPONDING AUTHOR: Gabriele Villarini, IIHR–Hydroscience and Engineering, The University of Iowa, 306 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, E-mail: gabriele-villarini@uiowa.edu

A supplement to this article is available online (10.1175/BAMS-D-13-00060.2)

Riverine flooding associated with North Atlantic tropical cyclones (TCs) is responsible for large societal and economic impacts. The effects of TC flooding are not limited to the coastal regions, but affect large areas away from the coast, and often away from the center of the storm. Despite these important repercussions, inland TC flooding has received relatively little attention in the scientific literature, although there has been growing media attention following Hurricanes Irene (2011) and Sandy (2012). Based on discharge data from 1981 to 2011, the authors provide a climatological view of inland flooding associated with TCs, leveraging the wealth of discharge measurements collected, archived, and disseminated by the U.S. Geological Survey (USGS). Florida and the eastern seaboard of the United States (from South Carolina to Maine and Vermont) are the areas that are the most susceptible to TC flooding, with typical TC flood peaks that are 2 to 6 times larger than the local 10-yr flood peak, causing major flooding. A secondary swath of extensive TC-induced flooding in the central United States is also identified. These results indicate that flooding from TCs is not solely a coastal phenomenon but affects much larger areas of the United States, as far inland as Illinois, Wisconsin, and Michigan. Moreover, the authors highlight the dependence of the frequency and magnitude of TC flood peaks on large-scale climate indices, and the role played by the North Atlantic Oscillation and the El Niño–Southern Oscillation phenomenon (ENSO), suggesting potential sources of extended-range predictability.

CORRESPONDING AUTHOR: Gabriele Villarini, IIHR–Hydroscience and Engineering, The University of Iowa, 306 C. Maxwell Stanley Hydraulics Laboratory, Iowa City, IA 52242, E-mail: gabriele-villarini@uiowa.edu

A supplement to this article is available online (10.1175/BAMS-D-13-00060.2)

Supplementary Materials

    • Supplemental Materials (PDF 1.57 MB)
Save