• Adams, D. K., and Coauthors, 2011: A dense GNSS meteorological network for observing deep convection in the Amazon. Atmos. Sci. Lett., 12, 207212, doi:10.1002/asl.312.

    • Search Google Scholar
    • Export Citation
  • Bailey, J. C., , L. D. Carey, , R. J. Blakeslee, , S. J. Goodman, , R. I. Albrecht, , C. A. Morales, , and O. Pinto Jr., 2011: São Paulo Lightning Mapping Array (SPLMA): Deployment and plans. Proc. 14th Int. Conf. on Atmospheric Electricity, Rio de Janeiro, Brazil, International Commission on Atmospheric Electricity. [Available online at www.icae2011.net.br/index.pt.html.]

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., , P. Saavedra, , C. A. Morales, , and C. Simmer, 2011: Understanding three-dimensional effects in polarized observations with the ground-based ADMIRARI radiometer during the CHUVA campaign. J. Geophys. Res., 116, D09204, doi:10.1029/2010JD015335.

    • Search Google Scholar
    • Export Citation
  • Berg, W., , T. L'Ecuyer, , and C. Kummerow, 2006: Rainfall climate regimes: The relationship of regional TRMM rainfall biases to the environment. J. Appl. Meteor. Climatol., 45, 434454, doi:10.1175/JAM2331.1.

    • Search Google Scholar
    • Export Citation
  • Cadeddu, M. P., , J. C. Liljegren, , and D. D. Turner, 2013: The Atmospheric Radiation Measurement (ARM) program network of microwave radiometers: Instrumentation, data, and retrievals. Atmos. Meas. Tech. Discuss., 6, 37233763, doi:10.5194/amtd-6-3723-2013.

    • Search Google Scholar
    • Export Citation
  • Calheiros, A. J. P., , and L. A. T. Machado, 2014: Cloud and rain liquid water statistics in the CHUVA campaign. Atmos. Res., 144, 126140, doi:10.1016/j.atmosres.2014.03.006.

    • Search Google Scholar
    • Export Citation
  • Cecchini, M. A., , L.A.T. Machado, , and P. Artaxo, 2014: Droplet size distributions as a function of rainy system type and cloud condensation nuclei concentrations. Atmos. Res., 143, 301312, doi:10.1016/j.atmosres.2014.02.022.

    • Search Google Scholar
    • Export Citation
  • Cecil, D. J., , and C. B. Blankenship, 2012: Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Climate, 25, 687703, doi:10.1175/JCLI-D-11-00130.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, J. C. P., , M. A. F. da Silva Dias, , and C. A. Nobre, 1995: Environmental conditions associated with Amazonian squall lines: A case study. Mon. Wea. Rev., 123, 31633174, doi:10.1175/1520-0493(1995)1232.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Costa, A. A., , C. J. de Oliveira, , J. C. P. de Oliveira, , and A. J. C. Sampaio, 2000: Microphysical observations of warm cumulus clouds in Ceará, Brazil. Atmos. Res., 54, 167199, doi:10.1016/S0169-8095(00)00045-4.

    • Search Google Scholar
    • Export Citation
  • Cotton, W. R., 1982: Modification of precipitation from warm clouds—A review. Bull. Amer. Meteor. Soc., 63, 146160, doi:10.1175/1520-0477(1982)0632.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., , and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838851, doi:10.1175/1520-0469(1995)0522.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garreaud, R. D., 2000: Cold air incursions over subtropical South America: Mean structure and dynamics. Mon. Wea. Rev., 128, 25442559, doi:10.1175/1520-0493(2000)1282.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garstang, M., , H. L. Massie, , J. Halverson, , S. Greco, , and J. Scala, 1994: Amazon coastal squall lines. Part I: Structure and kinematics. Mon. Wea. Rev., 122, 608622, doi:10.1175/1520-0493(1994)1222.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2012: The GOES-R Proving Ground: Accelerating user readiness for the Next Generation Geostationary Environmental Satellite System. Bull. Amer. Meteor. Soc., 93, 10291040, doi:10.1175/BAMS-D-11-00175.1.

    • Search Google Scholar
    • Export Citation
  • Goodman, S. J., and Coauthors, 2013: The GOES-R Geostationary Lightning Mapper (GLM). Atmos. Res., 125–126, 3449, doi:10.1016/j.atmosres.2013.01.006.

    • Search Google Scholar
    • Export Citation
  • Höller, H., , H.-D. Betz, , C. A. Morales, , R. Blakeslee, , J. C. Bailey, , and R. I. Albrecht, 2013: Multi-sensor field studies of lightning and implications for MTG-LI. Extended Abstracts, 2013 EUMETSAT Meteorological Satellite Conf. and 19th Satellite Meteorology, Oceanography, and Climatology Conf., Vienna, Austria, EUMETSAT and Amer. Meteor. Soc.. [Available online at http://elib.dlr.de/85861/.]

    • Search Google Scholar
    • Export Citation
  • Kouadio Y. K., , J. Servain, , L. A. T. Machado, , and C. A. D. Lentini, 2012: Heavy rainfall episodes in the eastern Northeast Brazil linked to large-scale ocean–atmosphere conditions in the tropical Atlantic. Adv. Meteor., 2012, 369567, doi:10.1155/2012/369567.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , and E. J. Zipser, 2009: “Warm rain” in the tropics: Seasonal and regional distributions based on 9 yr of TRMM data. J. Climate, 22, 767779, doi:10.1175/2008JCLI2641.1.

    • Search Google Scholar
    • Export Citation
  • Liu, C., , E. R. Williams, , E. J. Zipser, , and G. Burns, 2010: Diurnal variations of global thunderstorms and electrified shower clouds and their contribution to the global electrical circuit. J. Atmos. Sci., 67, 309323, doi:10.1175/2009JAS3248.1.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., , and W. B. Rossow, 1993: Structural characteristics and radiative properties of tropical cloud clusters. Mon. Wea. Rev., 121, 32343260, doi:10.1175/1520-0493(1993)1212.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., , H. Laurent, , and A. A. Lima, 2002: Diurnal march of the convection observed during TRMMWETAMC/LBA. J. Geophys. Res., 107(D20), 8064, doi:10.1029/2001JD000338.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., , W. F. S. Lima, , O. Pinto Jr., , and C. A. Morales, 2009: Relationship between cloud-to-ground discharge and penetrative clouds: A multi-channel satellite application. Atmos. Res., 93, 304309, doi:10.1016/j.atmosres.2008.10.003.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., , and W. W. Grabowski, 2007: Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. J. Atmos. Sci., 64, 28392861, doi:10.1175/JAS3980.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., , E. N. Anagnostou, , and R. F. Adler, 2000: A 10-yr climatology of Amazonian rainfall derived from passive microwave satellite observations. J. Appl. Meteor., 39, 4256, doi:10.1175/1520-0450(2000)0392.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Negri, R. G., , L. A. T. Machado, , S. English, , and M. Forsythe, 2014: Combining cloud-resolving model with satellite for cloud process model simulation validation. J. Appl. Meteor. Climatol., 53, 521533, doi:10.1175/JAMC-D-12-0178.1.

    • Search Google Scholar
    • Export Citation
  • Peters, G., , B. Fischer, , H. Münster, , M. Clemens, , and A. Wagner, 2005: Profiles of raindrop size distributions as retrieved by microrain radars. J. Appl. Meteor., 44, 19301949, doi:10.1175/JAM2316.1.

    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., 2004: Nocturnal cloud systems and the diurnal variation of clouds and rainfall in southwestern Amazonia. Mon. Wea. Rev., 132, 12011219, doi:10.1175/1520-0493(2004)1322.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Salio, P., , M. Nicolini, , and E. J. Zipser, 2007: Mesoscale convective systems over southeastern South America and their relationship with the South American low-level jet. Mon. Wea. Rev., 135, 12901309, doi:10.1175/MWR3305.1.

    • Search Google Scholar
    • Export Citation
  • Sapucci, L. F., , L. A. T. Machado, , J. F. G. Monico, , and A. Plana-Fattori, 2007: Intercomparison of integrated water vapor estimates from multisensors in the Amazonian region. J. Atmos. Oceanic Technol., 24, 18801894, doi:10.1175/JTECH2090.1.

    • Search Google Scholar
    • Export Citation
  • Schneebeli, M., , J. Sakuragi, , T. Biscaro, , C. F. de Angelis, , I. Carvalho da Costa, , C. A. Morales, , L. Baldini, , and L. A. T. Machado, 2012: Polarimetric X-band weather radar measurements in the tropics: Radome and rain attenuation correction. Atmos. Meas. Tech., 5, 21832199, doi:10.5194/amt-5-2183-2012.

    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., , W. A. Petersen, , and L. D. Carey, 2009: Preliminary development and evaluation of lightning jump algorithms for the real-time detection of severe weather. J. Appl. Meteor. Climatol., 48, 25432563, doi:10.1175/2009JAMC2237.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., , and R. A. Houze, 2003: Stratiform rain in the tropics as seen by the TRMM Precipitation Radar. J. Climate, 16, 17391756, doi:10.1175/1520-0442(2003)0162.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Silva Dias, M. A. F., Ed., 2009: As chuvas de novembro de 2008 em Santa Catarina: Um estudo de caso visando à melhoria do monitoramento e da previsão de eventos extremos. Tech. Note, São José dos Campos, INPE, 67 pp. [Available online at www.ciram.com.br/ciram_arquivos/arquivos/gtc/downloads/NotaTecnica_SC.pdf.]

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and Coauthors, 2012: Global precipitation measurement: Methods, datasets and applications. Atmos. Res., 104–105, 7097, doi:10.1016/j.atmosres.2011.10.021.

    • Search Google Scholar
    • Export Citation
  • Testud, J., , E. Le Bouar, , E. Obligis, , and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356, doi:10.1175/1520-0426(2000)0172.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., , and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355371, doi:10.1175/1520-0450(1996)0352.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., , A. Kruger, , W. Krajewski, , and A. Perreira, 2002: Measurements of drop size distribution in southwestern Amazon region. J. Geophys. Res., 107, 8052, doi:10.1029/2001JD000355.

    • Search Google Scholar
    • Export Citation
  • Vila, D. A., , L. A. T. Machado, , H. Laurent, , and I. Velasco, 2008: Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) using satellite infrared imagery: Methodology and validation. Wea. Forecasting, 23, 233245, doi:10.1175/2007WAF2006121.1.

    • Search Google Scholar
    • Export Citation
  • Voss, P. B., , E. E. Riddle, , and M. S. Smith, 2005: Altitude control of long-duration balloons. J. Aircr., 42, 478482, doi:10.2514/1.7481.

    • Search Google Scholar
    • Export Citation
  • Ware, R., , R. Carpenter, , J. Güldner, , J. Liljegren, , T. Nehrkorn, , F. Solheim, , and F. Vandenberghe, 2003: A multichannel radiometric profiler of temperature, humidity, and cloud liquid. Radio Sci., 38, 8079, doi:10.1029/2002RS002856.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., , and S. B. Stanfill, 2002: The physical origin of the land–ocean contrast in lightning activity. C. R. Phys., 3, 12771292, doi:10.1016/S1631-0705(02)01407-X.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and Coauthors, 1999: The behavior of total lightning activity in severe Florida thunderstorms. Atmos. Res., 51, 245265, doi:10.1016/S0169-8095(99)00011-3.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., , C. Liu, , D. J. Cecil, , S. W. Nesbitt, , and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, doi:10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 95 95 37
PDF Downloads 52 52 19

The Chuva Project: How Does Convection Vary across Brazil?

View More View Less
  • 1 Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil
  • 2 Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, Brazil
  • 3 Instituto de Aeronaútica e Espaço, Departamento de Ciência e Tecnologia Aeroespacial, São Paulo, Brazil
  • 4 Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil
  • 5 GSFC, Greenbelt, Maryland
  • 6 Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil
  • 7 Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado
  • 8 Instituto de Geociências, Universidade Federal do Pará, Belém, Pará, Brazil
  • 9 Atmospheric Sciences Research Center, University at Albany, State University of New York, Albany, New York
  • 10 Departamento de Física, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
  • 11 Fundação Cearense de Meteorologia, Fortaleza, Brazil
  • 12 Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil
  • 13 Laboratoire d'Aérologie, University of Toulouse, Toulouse, France
  • 14 NASA Wallops Flight Facility, Wallops Island, Virginia
  • 15 Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico
  • 16 Istituto di Scienze dell'Atmosfera e del Clima, CNR, Rome, Italy
  • 17 Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil
  • 18 Universidade de Buenos Aires, Buenos Aires, Argentina
  • 19 Instituto de Física, Universidade de São Paulo, São Paulo, Brazil
  • 20 Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brazil
  • 21 Universidade do Estado do Amazonas, Manaus, Amazonas, Brazil
  • 22 NASA Marshall Space Flight Center, Huntsville, Alabama
  • 23 University of Alabama in Huntsville, Huntsville, Alabama
  • 24 Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, Brazil
  • 25 University of Maryland, Baltimore County, Baltimore, Maryland
© Get Permissions
Restricted access

CHUVA, meaning “rain” in Portuguese, is the acronym for the Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud-Resolving Modeling and to the Global Precipitation Measurement (GPM). The CHUVA project has conducted five field campaigns; the sixth and last campaign will be held in Manaus in 2014. The primary scientific objective of CHUVA is to contribute to the understanding of cloud processes, which represent one of the least understood components of the weather and climate system. The five CHUVA campaigns were designed to investigate specific tropical weather regimes. The first two experiments, in Alcantara and Fortaleza in northeastern Brazil, focused on warm clouds. The third campaign, which was conducted in Belém, was dedicated to tropical squall lines that often form along the sea-breeze front. The fourth campaign was in the Vale do Paraiba of southeastern Brazil, which is a region with intense lightning activity. In addition to contributing to the understanding of cloud process evolution from storms to thunderstorms, this fourth campaign also provided a high-fidelity total lightning proxy dataset for the NOAA Geostationary Operational Environmental Satellite (GOES)-R program. The fifth campaign was carried out in Santa Maria, in southern Brazil, a region of intense hailstorms associated with frequent mesoscale convective complexes. This campaign employed a multimodel high-resolution ensemble experiment. The data collected from contrasting precipitation regimes in tropical continental regions allow the various cloud processes in diverse environments to be compared. Some examples of these previous experiments are presented to illustrate the variability of convection across the tropics.

CORRESPONDING AUTHOR: Luiz A. T. Machado, Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, Rodovia Pres. Dutra, km 40, Brasil, Cachoeira Paulista/SP, 12630-000 Brazil. E-mail: luiz.machado@cptec.inpe.br

CHUVA, meaning “rain” in Portuguese, is the acronym for the Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud-Resolving Modeling and to the Global Precipitation Measurement (GPM). The CHUVA project has conducted five field campaigns; the sixth and last campaign will be held in Manaus in 2014. The primary scientific objective of CHUVA is to contribute to the understanding of cloud processes, which represent one of the least understood components of the weather and climate system. The five CHUVA campaigns were designed to investigate specific tropical weather regimes. The first two experiments, in Alcantara and Fortaleza in northeastern Brazil, focused on warm clouds. The third campaign, which was conducted in Belém, was dedicated to tropical squall lines that often form along the sea-breeze front. The fourth campaign was in the Vale do Paraiba of southeastern Brazil, which is a region with intense lightning activity. In addition to contributing to the understanding of cloud process evolution from storms to thunderstorms, this fourth campaign also provided a high-fidelity total lightning proxy dataset for the NOAA Geostationary Operational Environmental Satellite (GOES)-R program. The fifth campaign was carried out in Santa Maria, in southern Brazil, a region of intense hailstorms associated with frequent mesoscale convective complexes. This campaign employed a multimodel high-resolution ensemble experiment. The data collected from contrasting precipitation regimes in tropical continental regions allow the various cloud processes in diverse environments to be compared. Some examples of these previous experiments are presented to illustrate the variability of convection across the tropics.

CORRESPONDING AUTHOR: Luiz A. T. Machado, Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, Rodovia Pres. Dutra, km 40, Brasil, Cachoeira Paulista/SP, 12630-000 Brazil. E-mail: luiz.machado@cptec.inpe.br
Save