• Anderson, J., , T. Hoar, , K. Raeder, , H. Liu, , N. Collins, , R. Torn, , and A. Avellano, 2009: The data assimilation research testbed: a community facility. Bull. Amer. Meteor. Soc., 90, 12831296.

    • Search Google Scholar
    • Export Citation
  • Dirren, S., , R. Torn, , and G. Hakim, 2007: A data assimilation case study using a limited-area ensemble Kalman filter. Mon. Wea. Rev., 135, 14551473, doi:10.1175/MWR3358.1.

    • Search Google Scholar
    • Export Citation
  • Madaus, L. E., , G. J. Hakim, , and C. F. Mass, 2014: Utility of dense pressure observations for improving mesoscale analyses and forecasts. Mon. Wea. Rev., 142, 23982413, doi:10.1175/MWR-D-13-00269.1.

    • Search Google Scholar
    • Export Citation
  • Mahoney, W. P., , and J.M. O'Sullivan, 2013: Realizing the Potential of Vehicle-Based Observations. Bull. Amer. Meteor. Soc., 94, 10071018.

    • Search Google Scholar
    • Export Citation
  • Overeem, A., , H. Leijnse, , and R. Uijlenhoet, 2013a: Country-wide rainfall maps from cellular communication networks. Proc. Natl. Acad. Sci. USA, 110, 27412745, doi:10.1073/pnas.1217961110.

    • Search Google Scholar
    • Export Citation
  • Overeem, A., , J. C. R. Robinson, , H. Leijnse, , G. J. Steeneveld, , B. K. P. Horn, , and R. Uijlenhoet, 2013b: Crowdsourcing urban air temperatures from smartphone battery temperatures. Geophys. Res. Lett., 40, 40814085, doi:10.1002/grl.50786.

    • Search Google Scholar
    • Export Citation
  • Torn, R. D., , and G. J. Hakim, 2008: Performance characteristics of a pseudo-operational ensemble Kalman filter. Mon. Wea. Rev., 136, 39473963, doi:10.1175/2008MWR2443.1.

    • Search Google Scholar
    • Export Citation
  • Wheatley, D., , and D. Stensrud, 2010: The impact of assimilating surface pressure observations on severe weather events in a WRF mesoscale ensemble system. Mon. Wea. Rev., 138, 16731694, doi:10.1175/2009MWR3042.1.

    • Search Google Scholar
    • Export Citation
  • Whitaker, J., , G. Compo, , X. Wei, , and T. Hamill, 2004: Reanalysis without radiosondes using ensemble data assimilation. Mon. Wea. Rev., 132, 11901200, doi:10.1175/1520-0493(2004)1322.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 195 195 41
PDF Downloads 83 83 13

Surface Pressure Observations from Smartphones: A Potential Revolution for High-Resolution Weather Prediction?

View More View Less
  • 1 Department of Atmospheric Sciences, University of Washington, Seattle, Washington
© Get Permissions
Restricted access

Millions of smartphones possess relatively accurate pressure sensors and the expectation is that these numbers will grow into the hundreds of millions globally during the next few years. The availability of millions of pressure observations each hour from smartphones has major implications for high-resolution numerical weather prediction. This paper reviews smartphone pressure-sensor technology, describes commercial efforts to collect the data in real time, examines the implications for mesoscale weather prediction, and provides an example of assimilating smartphone pressure observations for a strong convective event over eastern Washington State.

CORRESPONDING AUTHOR: Clifford F. Mass, Department of Atmospheric Sciences, Box 351640, University of Washington, Seattle, WA 98195, E-mail: cliff@atmos.washington.edu

Millions of smartphones possess relatively accurate pressure sensors and the expectation is that these numbers will grow into the hundreds of millions globally during the next few years. The availability of millions of pressure observations each hour from smartphones has major implications for high-resolution numerical weather prediction. This paper reviews smartphone pressure-sensor technology, describes commercial efforts to collect the data in real time, examines the implications for mesoscale weather prediction, and provides an example of assimilating smartphone pressure observations for a strong convective event over eastern Washington State.

CORRESPONDING AUTHOR: Clifford F. Mass, Department of Atmospheric Sciences, Box 351640, University of Washington, Seattle, WA 98195, E-mail: cliff@atmos.washington.edu
Save