• Ament, F., and C. Simmer, 2006: Improved representation of land-surface heterogeneity in a non-hydrostatic numerical weather prediction model. Bound.-Layer Meteor., 121, 153174, doi:10.1007/s10546-006-9066-4.

    • Search Google Scholar
    • Export Citation
  • Anderson, J., T. Hoar, K. Raeder, H. Liu, N. Collins, R. Torn, and A. Arellano, 2009: The Data Assimilation Research Testbed: A community facility. Bull. Amer. Meteor. Soc., 90, 12831296, doi:10.1175/2009BAMS2618.1.

    • Search Google Scholar
    • Export Citation
  • Avissar, R., and R. A. Pielke, 1989: A parameterization of heterogeneous land surfaces for atmospheric numerical models and its impact on regional meteorology. Mon. Wea. Rev., 117, 21132136, doi:10.1175/1520-0493(1989)117<2113:APOHLS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baatz, R., H. R. Bogena, H.-J. Hendricks Franssen, J. A. Huisman, W. Qu, C. Montzka, and H. Vereecken, 2014: Calibration of a catchment scale cosmic-ray soil moisture network: A comparison of three different methods. J. Hydrol., 516, 231244, doi:10.1016/j.jhydrol.2014.02.026.

    • Search Google Scholar
    • Export Citation
  • Bak, P., C. Tang, and K. Wiesenfeld, 1988: Self-organizes criticality. Phys. Rev., 38A, 364374, doi:10.1103/PhysRevA.38.364.

  • Baldauf, M., A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, and T. Reinhardt, 2011: Operational convective-scale numerical weather prediction with the COSMO model: Description and sensitivities. Mon. Wea. Rev., 139, 38873905, doi:10.1175/MWR-D-10-05013.1.

    • Search Google Scholar
    • Export Citation
  • Bear, J., 1988: Dynamics of Fluids in Porous Media. Dover Civil and Mechanical Engineering, Dover Publications, 764 pp.

  • Bejan, A., and S. Lorente, 2006: Constructal theory of generation of configuration in nature and engineering. J. Appl. Phys., 100, 041301, doi:10.1063/1.2221896.

    • Search Google Scholar
    • Export Citation
  • Bogena, H., M. Herbst, J. A. Huisman, U. Rosenbaum, A. Weuthen, and H. Vereecken, 2010: Potential of wireless sensor networks for measuring soil water content variability. Vadose Zone J., 9, 10021013, doi:10.2136/vzj2009.0173.

    • Search Google Scholar
    • Export Citation
  • Bogena, H., J. A. Huisman, R. Baatz, H.-J. Hendricks Franssen, and H. Vereecken, 2013: Accuracy of the cosmic-ray soil water content probe in humid forest ecosystems: The worst case scenario. Water Resour. Res., 49, 57785791, doi:10.1002/wrcr.20463.

    • Search Google Scholar
    • Export Citation
  • Bornemann, L., G. Welp, and W. Amelung, 2010: Particulate organic matter at the field scale: Rapid acquisition using mid-infrared spectroscopy. Soil. Sci. Soc. Amer. J., 74, 11471156, doi:10.2136/sssaj2009.0195.

    • Search Google Scholar
    • Export Citation
  • Bornemann, L., M. Herbst, G. Welp, H. Vereecken, and W. Amelung, 2011: Rock fragments control organic carbon pool sizes in agricultural topsoil. Soil. Sci. Soc. Amer. J., 75, 18981907, doi:10.2136/sssaj2010.0454.

    • Search Google Scholar
    • Export Citation
  • Brunsell, N. A., D. B. Mechem, and M. C. Anderson, 2011: Surface heterogeneity impacts on boundary layer dynamics via energy balance partitioning. Atmos. Chem. Phys., 11, 34033416, doi:10.5194/acp-11-3403-2011.

    • Search Google Scholar
    • Export Citation
  • Busch, S., J. van der Kruk, and H. Vereecken, 2014: Improved characterization of fine-texture soils using on-ground GPR full-waveform inversion. IEEE Trans. Geosci. Remote Sens., 52, 39473958, doi:10.1109/TGRS.2013.2278297.

    • Search Google Scholar
    • Export Citation
  • Chen, H. C., V. C. Patel, and S. Ju, 1990: Solutions of Reynolds-averaged Navier-Stokes equations for three-dimensional incompressible flows. J. Comput. Phys., 88, 305336, doi:10.1016/0021-9991(90)90182-Z.

    • Search Google Scholar
    • Export Citation
  • Cornelissen, T., B. Diekkrüger, and H. R. Bogena, 2014: Significance of scale and lower boundary condition in the 3D simulation of hydrological processes and soil moisture variability in a forested headwater catchment. J. Hydrol., 516, 140153, doi:10.1016/j.jhydrol.2014.01.060.

    • Search Google Scholar
    • Export Citation
  • Couvreur, V., J. Vanderborght, and M. Javaux, 2012: A simple three-dimensional macroscopic root water uptake model based on the hydraulic architecture approach. Hydrol. Earth Syst. Sci., 16, 29572971, doi:10.5194/hess-16-2957-2012.

    • Search Google Scholar
    • Export Citation
  • Crewell, S., and Coauthors 2004: The BALTEX Bridge campaign: An integrated approach for a better understanding of clouds. Bull. Amer. Meteor. Soc., 85, 15651584, doi:10.1175/BAMS-85-10-1565.

    • Search Google Scholar
    • Export Citation
  • Curdt, C., D. Hoffmeister, C. Jekel, G. Waldhoff, and G. Bareth, 2012: Scientific research data management for soil-vegetation-atmosphere data—The TR32DB. Int. J. Digital Curation, 7, 6880, doi:10.2218/ijdc.v7i2.208.

    • Search Google Scholar
    • Export Citation
  • Damm, A., A. Erler, W. Hillen, M. Meroni, M. E. Schaepman, W. Verhoef, and U. Rascher, 2011: Modeling the impact of spectral sensor configurations on the FLD retrieval accuracy of sun-induced chlorophyll fluorescence. Remote Sens. Environ., 115, 18821892, doi:10.1016/j.rse.2011.03.011.

    • Search Google Scholar
    • Export Citation
  • Damm, A., L. Guanter, S. Garbari, W. Verhoef, D. Schläpfer, and M. E. Schaepman, 2014a: Impact of varying irradiance on vegetation indices and chlorophyll fluorescence derived from spectroscopy data. Remote Sens. Environ., 156, 202215, doi:10.1016/j.rse.2014.09.031.

    • Search Google Scholar
    • Export Citation
  • Damm, A., L. Guanter, V. C. E. Laurent, M. E. Schaepman, A. Schickling, and U. Rascher, 2014b: FLD-based retrieval of sun-induced chlorophyll fluorescence from medium spectral resolution airborne spectroscopy data. Remote Sens. Environ., 147, 256266, doi:10.1016/j.rse.2014.03.009.

    • Search Google Scholar
    • Export Citation
  • de Rosnay, P., and Coauthors, 2009: AMMA Land Surface Model Intercomparison Experiment coupled to the Community Microwave Emission Model: ALMIP-MEM. J. Geophys. Res., 114, D05108, doi:10.1029/2008JD010724.

    • Search Google Scholar
    • Export Citation
  • Diederich, M., A. Ryzhkov, C. Simmer, P. Zhang, and S. Troemel, 2015a: Use of specific attenuation for rainfall measurement at X-band radar wavelengths. Part I: Radar calibration and partial beam blockage estimation. J. Hydrometeor., 16, 487502, doi:10.1175/JHM-D-14-0066.1.

    • Search Google Scholar
    • Export Citation
  • Diederich, M., A. Ryzhkov, C. Simmer, P. Zhang, and S. Troemel, 2015b: Use of specific attenuation for rainfall measurement at X-band radar wavelengths. Part II: Rainfall estimates and comparison with rain gauges. J. Hydrometeor., 16, 503516, doi:10.1175/JHM-D-14-0067.1.

    • Search Google Scholar
    • Export Citation
  • Done, J., C. A. Davis, and M. Weisman, 2004: The next generation of NWP: Explicit forecasts of convection using the Weather Research and Forecasting (WRF) model. Atmos. Sci. Lett., 5, 110117, doi:10.1002/asl.72.

    • Search Google Scholar
    • Export Citation
  • Gasper, F., K. Goergen, P. Shrestha, M. Sulis, J. Rihani, M. Geimer, and S. J. Kollet, 2014: Implementation and scaling of the fully coupled Terrestrial Systems Modeling Platform (TerrSysMP v1.0) in a massively parallel supercomputing environment—A case study on JUQUEEN (IBM Blue Gene/Q). Geosci. Model Dev., 7, 25312543, doi:10.5194/gmd-7-2531-2014.

    • Search Google Scholar
    • Export Citation
  • Grossman, R. L., D. Yates, M. A. LeMone, M. L. Wesely, and J. Song, 2005: Observed effects of horizontal radiative surface temperature variations on the atmosphere over a Midwest watershed during CASES 97. J. Geophys. Res., 110, D06117, doi:10.1029/2004JD004542.

    • Search Google Scholar
    • Export Citation
  • Han, X., H. J. Hendricks Franssen, C. Montzka, and H. Vereecken, 2014: Soil moisture and soil properties estimation in the Community Land Model with synthetic brightness temperature observations. Water Resour. Res., 50, 60816105, doi:10.1002/2013WR014586.

    • Search Google Scholar
    • Export Citation
  • Hasan, S., C. Montzka, C. Rüdiger, M. Ali, H. Bogena, and H. Vereecken, 2014: Soil moisture retrieval from airborne L-band passive microwave using high resolution multispectral data. J. Photogramm. Remote Sens., 91, 5971, doi:10.1016/j.isprsjprs.2014.02.005.

    • Search Google Scholar
    • Export Citation
  • Herbst, M., L. Bornemann, A. Graf, G. Welp, H. Vereecken, and W. Amelung, 2012: A geostatistical approach to the field-scale pattern of heterotrophic soil CO2 emission using covariates. Biogeochemistry, 111, 377392, doi:10.1007/s10533-011-9661-4.

    • Search Google Scholar
    • Export Citation
  • Hoffmeister, D., G. Waldhoff, C. Curdt, N. Tilly, J. Bendig, and G. Bareth, 2013: Spatial variability detection of crop height in a single field by terrestrial laser scanning. Precision Agriculture 13, J. V. Stafford, Ed., Wageningen Academic Publishers, 267274.

    • Search Google Scholar
    • Export Citation
  • Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D, 230, 112126, doi:10.1016/j.physd.2006.11.008.

    • Search Google Scholar
    • Export Citation
  • Javaux, M., T. Schröder, J. Vanderborght, and H. Vereecken, 2008: Use of a three-dimensional detailed modeling approach for predicting root water uptake. Vadose Zone J., 7, 10791088, doi:10.2136/vzj2007.0115.

    • Search Google Scholar
    • Export Citation
  • Javaux, M., V. Couvreur, J. Vanderborght, and H. Vereecken, 2013: Root water uptake: From three-dimensional biophysical processes to macroscopic modeling approaches. Vadose Zone J., 12, doi:10.2136/vzj2013.02.0042.

    • Search Google Scholar
    • Export Citation
  • Kemna, A., and Coauthors, 2012: An overview of the spectral induced polarization method for near-surface applications. Near Surf. Geophys., 11, 453468, doi:10.3997/1873-0604.2012027.

    • Search Google Scholar
    • Export Citation
  • Kollet S. J., and R. M. Maxwell, 2008: Capturing the influence of groundwater dynamics on land surface processes using an integrated, distributed watershed model. Water Resour. Res., 44, W02402, doi:10.1029/2007WR006004.

    • Search Google Scholar
    • Export Citation
  • Kollet S. J., R. M. Maxwell, C. S. Woodward, S. Smith, J. Vanderborght, H. Vereecken, and C. Simmer, 2010: Proof of concept of regional scale hydrologic simulations at hydrologic resolution utilizing massively parallel computer resources. Water Resour. Res., 46, W04201, doi:10.1029/2009WR008730.

    • Search Google Scholar
    • Export Citation
  • Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 30, 301305.

    • Search Google Scholar
    • Export Citation
  • Korres, W., T. G. Reichenau, and K. Schneider, 2013: Patterns and scaling properties of surface soil moisture in an agricultural landscape: An ecohydrological modeling study. J. Hydrol., 498, 89102, doi:10.1016/j.jhydrol.2013.05.050.

    • Search Google Scholar
    • Export Citation
  • Koster, R., and M. Suarez, 1992: Modeling the land surface boundary in climate models as a composite of independent vegetation stands. J. Geophys. Res., 97, 26972715, doi:10.1029/91JD01696.

    • Search Google Scholar
    • Export Citation
  • Koyama, C. N., W. Korres, P. Fiener, and K. Schneider, 2010: Variability of surface soil moisture observed from multitemporal C-Band synthetic aperture radar and field data. Vadose Zone J., 9, 10141024, doi:10.2136/vzj2009.0165.

    • Search Google Scholar
    • Export Citation
  • Kustas, W., and M. Anderson, 2009: Advances in thermal infrared remote sensing for land surface modeling. Agric. For. Meteor., 149, 20712081, doi:10.1016/j.agrformet.2009.05.016.

    • Search Google Scholar
    • Export Citation
  • Langensiepen, M., M. Kupisch, M. T. van Wijk, and F. Ewert, 2012: Analyzing transient closed chamber effects on canopy gas exchange for optimizing flux calculation timing. Agric. For. Meteor., 164, 6170, doi:10.1016/j.agrformet.2012.05.006.

    • Search Google Scholar
    • Export Citation
  • Langensiepen, M., M. Kupisch, A. Graf, M. Schmidt, and F. Ewert, 2014: Improving the stem heat balance method for determining sap-flow in wheat. Agric. For. Meteor., 186, 3442, doi:10.1016/j.agrformet.2013.11.007.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., and Coauthors, 2000: Land–atmosphere interaction research, early results, and opportunities in the Walnut River Watershed in southeast Kansas: CASES and ABLE. Bull. Amer. Meteor. Soc., 81, 757779, doi:10.1175/1520-0477(2000)081<0757:LIRERA>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • LeMone, M. A., K. Ikeda, R. L. Grossman, and M. Rotach, 2003: Horizontal variability of 2-m temperature at night during CASES 97. J. Atmos. Sci., 60, 24312449, doi:10.1175/1520-0469(2003)060<2431:HVOMTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, S., and Y. Shao, 2013: Soil layer configuration requirement for large-eddy atmosphere and land surface coupled modeling. Atmos. Sci. Lett., 14, 112117, doi:10.1002/asl2.426.

    • Search Google Scholar
    • Export Citation
  • Loehnert, U., and Coauthors, 2015: JOYCE: Jülich Observatory for Cloud Evolution. Bull. Amer. Meteor. Soc., 96, 11571174, doi:10.1175/BAMS-D-14-00105.1.

    • Search Google Scholar
    • Export Citation
  • Lyon, S. W., and Coauthors, 2008: Coupling terrestrial and atmospheric water dynamics to improve prediction in a changing environment. Bull. Amer. Meteor. Soc., 89, 12751279, doi:10.1175/2008BAMS2547.1.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 2000: Surface heterogeneity and vertical structure of the boundary. Bound.-Layer Meteor., 96, 3362, doi:10.1023/A:1002482332477.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Mengelkamp, H.-T., and Coauthors, 2006: Evaporation over a heterogeneous land surface: The EVA_GRIPS project. Bull. Amer. Meteor. Soc., 87, 775786, doi:10.1175/BAMS-87-6-775.

    • Search Google Scholar
    • Export Citation
  • Mester, A., J. van der Kruk, E. Zimmermann, and H. Vereecken, 2011: Quantitative two-layer conductivity inversion of multi-configuration electromagnetic induction measurements. Vadose Zone J., 10, 13191330, doi:10.2136/vzj2011.0035.

    • Search Google Scholar
    • Export Citation
  • Mohnke, O., and N. Klitzsch, 2010: Microscale simulations of NMR relaxation in porous media considering internal field gradients. Vadose Zone J., 9, 846857, doi:10.2136/vzj2009.0161.

    • Search Google Scholar
    • Export Citation
  • Monin, A. S., and A. M. Obukhov, 1954: Basic laws of turbulent mixing in the atmosphere near the ground. Tr. Geofiz. Inst., Akad. Nauk SSSR, 151, 163187.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., and Coauthors, 2008: Improvements to the Community Land Model and their impact on the hydrological cycle. J. Geophys. Res., 113, G01021, doi:10.1029/2007JG000563.

    • Search Google Scholar
    • Export Citation
  • Patton, E. G., P. P. Sullivan, and C.-H. Moeng, 2005: The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface. J. Atmos. Sci., 62, 20782097, doi:10.1175/JAS3465.1.

    • Search Google Scholar
    • Export Citation
  • Perlo, J., E. Danieli, J. Perlo, B. Blümich, and F. Casanova, 2013: Optimized slim-line logging NMR tool to measure soil moisture in situ. J. Magn. Reson., 233, 7479, doi:10.1016/j.jmr.2013.05.004.

    • Search Google Scholar
    • Export Citation
  • Rahman, M., M. Sulis, and S. Kollet, 2014: The concept of dual-boundary forcing in land surface-subsurface interactions of the terrestrial hydrologic and energy cycles. Water Resour. Res., 50, 85318548, doi:10.1002/2014WR015738.

    • Search Google Scholar
    • Export Citation
  • Richards, L. A., 1931: Capillary conduction of liquids through porous mediums. Physics, 1, 318333, doi:10.1063/1.1745010.

  • Rosenbaum, U., H. R. Bogena, M. Herbst, J. A. Huisman, T. J. Peterson, A. Weuthen, A. W. Western, and H. Vereecken, 2012: Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resour. Res., 48, W10544, doi:10.1029/2011WR011518.

    • Search Google Scholar
    • Export Citation
  • Rudolph, S., J. van der Kruk, C. von Hebel, M. Ali, M. Herbst, C. Montzka, S. Pätzold, D. A. Robinson, H. Vereecken, and L. Weihermüller, 2015: Linking satellite derived LAI patterns with subsoil heterogeneity using large-scale ground-based electromagnetic Induction measurements. Geoderma, 241–242, 262271, doi:10.1016/j.geoderma.2014.11.015.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A., M. Diederich, P. Zhang, and C. Simmer, 2014: Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. J. Atmos. Oceanic Technol., 31, 599619, doi:10.1175/JTECH-D-13-00038.1.

    • Search Google Scholar
    • Export Citation
  • Schenk, H. J., and R. B. Jackson, 2005: Mapping the global distribution of deep roots in relation to climate and soil characteristics. Geoderma, 126, 129140, doi:10.1016/j.geoderma.2004.11.018.

    • Search Google Scholar
    • Export Citation
  • Schomburg, A., V. Venema, R. Lindau, F. Ament, and C. Simmer, 2010: A downscaling scheme for atmospheric variables to drive soil–vegetation–atmosphere transfer models. Tellus, 62B, 242258, doi:10.1111/j.1600-0889.2010.00466.x.

    • Search Google Scholar
    • Export Citation
  • Schomburg, A., V. Venema, R. Lindau, F. Ament, and C. Simmer, 2012: Disaggregation of screen-level variables in a numerical weather prediction model with an explicit simulation of subgrid-scale land-surface heterogeneity. Meteor. Atmos. Phys., 116, 8194, doi:10.1007/s00703-012-0183-y.

    • Search Google Scholar
    • Export Citation
  • Schween, J. H., S. Crewell, and U. Löhnert, 2011: Horizontal-humidity gradient from one single-scanning microwave radiometer. IEEE Geosci. Remote Sens. Lett., 8, 336340, doi:10.1109/LGRS.2010.2072981.

    • Search Google Scholar
    • Export Citation
  • Sellars, S., P. Nguyen, W. Chu, X. Gao, K. Hsu, and S. Sorooshian, 2013: Computational Earth science: Big data transformed into insight. Eos, Trans. Amer. Geophys. Union, 94, 277279, doi:10.1002/2013EO320001.

    • Search Google Scholar
    • Export Citation
  • Seuffert, G., P. Gross, C. Simmer, and E. F. Wood, 2002: The influence of hydrologic modeling on the predicted local weather: Two-way coupling of a mesoscale weather prediction model and a land surface hydrologic model. J. Hydrometeor., 3, 505523, doi:10.1175/1525-7541(2002)003<0505:TIOHMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shao, Y., S. Liu, J. H. Schween, and S. Crewell, 2013: Large-eddy atmosphere–land-surface modelling over heterogeneous surfaces: Model development and comparison with measurements. Bound.-Layer Meteor., 148, 333356, doi:10.1007/s10546-013-9823-0.

    • Search Google Scholar
    • Export Citation
  • Shrestha, P., M. Sulis, M. Masbou, S. Kollet, and C. Simmer, 2014: A scale-consistent Terrestrial System Modeling Platform based on COSMO, CLM and ParFlow. Mon. Wea. Rev., 142, 34663483, doi:10.1175/MWR-D-14-00029.1.

    • Search Google Scholar
    • Export Citation
  • Shuttleworth, J., R. Rosolem, M. Zreda, and T. E. Franz, 2013: The COsmic-ray Soil Moisture Interaction Code (COSMIC) for use in data assimilation. Hydrol. Earth Syst. Sci., 17, 32053217, doi:10.5194/hess-17-3205-2013.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., and D. Lenschow, 2001: Observations, experimental and large eddy simulation. Bull. Amer. Meteor. Soc., 82, 283294, doi:10.1175/1520-0477(2001)082<0283:OEALES>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sulis, M., M. Langensiepen, P. Shrestha, A. Schickling, C. Simmer, and S. J. Kollet, 2015: Evaluating the influence of plant-specific physiological parameterizations on the partitioning of land surface energy fluxes. J. Hydrometeor., 16, 517533, doi:10.1175/JHM-D-14-0153.1.

    • Search Google Scholar
    • Export Citation
  • Valcke, S., and Coauthors, 2012: Coupling technologies for Earth System Modelling. Geosci. Model Dev., 5, 15891596, doi:10.5194/gmd-5-1589-2012.

    • Search Google Scholar
    • Export Citation
  • Valcke, S., T. Craig, and L. Coquart, Eds., 2013: OASIS3-MCT user guide: OASIS3-MCT 2.0. CERFACS Tech. Rep. TR/CMGC/13/17, CERFACS/CNRS SUC URA 1875, 50 pp. [Available online at http://pantar.cerfacs.fr/globc/publication/technicalreport/2013/oasis3mct_UserGuide.pdf.]

  • van der Tol, C., W. Verhoef, J. Timmermans, A. Verhoef, and Z. Su, 2009: An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences, 6, 31093129, doi:10.5194/bg-6-3109-2009.

    • Search Google Scholar
    • Export Citation
  • Vereecken, H., S. Kollet, and C. Simmer, 2010: Patterns in soil–vegetation–atmosphere systems: Monitoring, modeling, and data assimilation. Vadose Zone J., 9, 821827, doi:10.2136/vzj2010.0122.

    • Search Google Scholar
    • Export Citation
  • von Hebel, C., S. Rudolph, A. Mester, J. A. Huisman, P. Kumbhar, H. Vereecken, and J. van der Kruk, 2014: Three-dimensional imaging of subsurface structural patterns using quantitative large-scale multiconfiguration electromagnetic induction data. Water Resour. Res., 50, 27322748, doi:10.1002/2013WR014864.

    • Search Google Scholar
    • Export Citation
  • Wang, K. C., and R. E. Dickinson, 2012: A review of global terrestrial evaporation: Observation, modelling, climatology, and climatic variability. Rev. Geophys., 50, RG2005, doi:10.1029/2011RG000373.

    • Search Google Scholar
    • Export Citation
  • Zacharias, S., and Coauthors, 2011: A network of terrestrial environmental observatories in Germany. Vadose Zone J., 10, 955973, doi:10.2136/vzj2010.0139.

    • Search Google Scholar
    • Export Citation
  • Zreda, M., D. Desilets, T. P. A. Ferré, and R. L. Scott, 2008: Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophys. Res. Lett., 35, L21402, doi:10.1029/2008GL035655.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 608 304 8
PDF Downloads 338 188 4

Monitoring and Modeling the Terrestrial System from Pores to Catchments: The Transregional Collaborative Research Center on Patterns in the Soil–Vegetation–Atmosphere System

View More View Less
  • 1 University of Bonn, Bonn, and Centre for High-Performance Scientific Computing in Terrestrial Systems (HPSC TerrSys), Jülich, Germany
  • | 2 University of Bonn, Bonn, Germany
  • | 3 Deutscher Wetterdienst, Offenbach
  • | 4 University of Bonn, Bonn, Germany
  • | 5 Forschungszentrum Jülich GmbH, Jülich, Germany
  • | 6 University Cologne, Cologne, Germany
  • | 7 University of Bonn, Bonn, Germany
  • | 8 Forschungszentrum Jülich GmbH, and Centre for High-Performance Scientific Computing in Terrestrial Systems (HPSC TerrSys), Jülich, Germany
  • | 9 Forschungszentrum Jülich GmbH, Jülich, Germany
  • | 10 University of Bonn, Bonn, Germany
  • | 11 RWTH Aachen University, Aachen, Germany
  • | 12 Forschungszentrum Jülich GmbH, and Centre for High-Performance Scientific Computing in Terrestrial Systems (HPSC TerrSys), Jülich, Germany
  • | 13 University of Bonn, Bonn, Germany
  • | 14 University Cologne, Cologne, Germany
  • | 15 University of Bonn, Bonn, Germany
  • | 16 Forschungszentrum Jülich GmbH, Jülich, Germany
  • | 17 University Cologne, Cologne, Germany
  • | 18 University of Bonn, Bonn, Germany
  • | 19 Technical University Braunschweig, Braunschweig, Germany
  • | 20 University of Bonn, Bonn, Germany
  • | 21 Forschungszentrum Jülich GmbH, Jülich, Germany
  • | 22 University Cologne, Cologne, Germany
  • | 23 University of Bonn, Bonn, Germany
Restricted access

Abstract

Most activities of humankind take place in the transition zone between four compartments of the terrestrial system: the unconfined aquifer, including the unsaturated zone; surface water; vegetation; and atmosphere. The mass, momentum, and heat energy fluxes between these compartments drive their mutual state evolution. Improved understanding of the processes that drive these fluxes is important for climate projections, weather prediction, flood forecasting, water and soil resources management, agriculture, and water quality control. The different transport mechanisms and flow rates within the compartments result in complex patterns on different temporal and spatial scales that make predictions of the terrestrial system challenging for scientists and policy makers. The Transregional Collaborative Research Centre 32 (TR32) was formed in 2007 to integrate monitoring with modeling and data assimilation in order to develop a holistic view of the terrestrial system. TR32 is a long-term research program funded by the German national science foundation Deutsche Forschungsgemeinschaft (DFG), in order to focus and integrate research activities of several universities on an emerging scientific topic of high societal relevance. Aiming to bridge the gap between microscale soil pores and catchment-scale atmospheric variables, TR32 unites research groups from the German universities of Aachen, Bonn, and Cologne, and from the environmental and geoscience departments of Forschungszentrum Jülich GmbH. Here, we report about recent achievements in monitoring and modeling of the terrestrial system, including the development of new observation techniques for the subsurface, the establishment of cross-scale, multicompartment modeling platforms from the pore to the catchment scale, and their use to investigate the propagation of patterns in the state and structure of the subsurface to the atmospheric boundary layer.

CORRESPONDING AUTHOR: Clemens Simmer, Meteorological Institute, University of Bonn, Auf dem Hügel 20, D-53121 Bonn, Germany, E-mail: csimmer@uni-bonn.de

Supplements to this article are available online (10.1175/BAMS-D-13-00134.2; 10.1175/BAMS-D-13-00134.3)

Abstract

Most activities of humankind take place in the transition zone between four compartments of the terrestrial system: the unconfined aquifer, including the unsaturated zone; surface water; vegetation; and atmosphere. The mass, momentum, and heat energy fluxes between these compartments drive their mutual state evolution. Improved understanding of the processes that drive these fluxes is important for climate projections, weather prediction, flood forecasting, water and soil resources management, agriculture, and water quality control. The different transport mechanisms and flow rates within the compartments result in complex patterns on different temporal and spatial scales that make predictions of the terrestrial system challenging for scientists and policy makers. The Transregional Collaborative Research Centre 32 (TR32) was formed in 2007 to integrate monitoring with modeling and data assimilation in order to develop a holistic view of the terrestrial system. TR32 is a long-term research program funded by the German national science foundation Deutsche Forschungsgemeinschaft (DFG), in order to focus and integrate research activities of several universities on an emerging scientific topic of high societal relevance. Aiming to bridge the gap between microscale soil pores and catchment-scale atmospheric variables, TR32 unites research groups from the German universities of Aachen, Bonn, and Cologne, and from the environmental and geoscience departments of Forschungszentrum Jülich GmbH. Here, we report about recent achievements in monitoring and modeling of the terrestrial system, including the development of new observation techniques for the subsurface, the establishment of cross-scale, multicompartment modeling platforms from the pore to the catchment scale, and their use to investigate the propagation of patterns in the state and structure of the subsurface to the atmospheric boundary layer.

CORRESPONDING AUTHOR: Clemens Simmer, Meteorological Institute, University of Bonn, Auf dem Hügel 20, D-53121 Bonn, Germany, E-mail: csimmer@uni-bonn.de

Supplements to this article are available online (10.1175/BAMS-D-13-00134.2; 10.1175/BAMS-D-13-00134.3)

Save