• Barker, H. W., A. V. Korolev, D. R. Hudak, J. W. Strapp, K. B. Strawbridge, and M. Wolde, 2008: A comparison between CloudSat and aircraft data for a multilayer, mixed phase cloud system during the Canadian CloudSat-CALIPSO Validation Project. J. Geophys. Res., 113, D00A16, doi:10.1029/2008JD009971.

    • Search Google Scholar
    • Export Citation
  • Battaglia, A., E. Rustemeier, A. Tokay, U. Blahak, and C. Simmer, 2010: PARSIVEL snow observations: A critical assessment. J. Atmos. Oceanic Technol., 27, 333344, doi:10.1175/2009JTECHA1332.1.

    • Search Google Scholar
    • Export Citation
  • Boodoo, S., D. Hudak, N. Donaldson, and M. Leduc, 2010: Application of dual-polarization radar melting-layer detection algorithm. J. Appl. Meteor. Climatol., 49, 17791793, doi:10.1175/2010JAMC2421.1.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., and Coauthors, 2012: Dual-frequency dual-polarized Doppler radar (D3R) system for GPM ground validation: Update and recent field observations. Extended Abstracts, Int. Geoscience and Remote Sensing Symp., Munich, Germany, IEEE, 346349, doi:10.1109/IGARSS.2012.6351567.

  • Chen, F. W., and D. H. Staelin, 2003: AIRS/AMSU/HSB precipitation estimates. IEEE Trans. Geosci. Remote Sens., 41, 410417, doi:10.1109/TGRS.2002.808322.

    • Search Google Scholar
    • Export Citation
  • Derksen, C., P. Toose, J. Lemmetyinen, J. Pulliainen, A. Langlois, N. Rutter, and M. Fuller, 2012: Evaluation of passive microwave brightness temperature simulations and snow water equivalent retrievals through a winter season. Remote Sens. Environ., 117, 236248, doi:10.1016/j.rse.2011.09.021.

    • Search Google Scholar
    • Export Citation
  • Ferraro, R. R., and Coauthors, 2005: NOAA operational hydrological products derived from the advanced microwave sounding unit. IEEE Trans. Geosci. Remote Sens., 43, 10361049, doi:10.1109/TGRS.2004.843249.

    • Search Google Scholar
    • Export Citation
  • Foster, J. L., and Coauthors, 2012: Passive microwave remote sensing of the historic February 2010 snowstorms in the Middle Atlantic region of the USA. Hydrol. Processes, 26, 34593471, doi:10.1002/hyp.8418.

    • Search Google Scholar
    • Export Citation
  • Hocking, W. K., M. C. Kelley, R. Rogers, W. O. J. Brown, D. Moorcroft, and J.-P. St. Maurice, 2001: Resolute Bay VHF radar: A multipurpose tool for studies of tropospheric motions, middle atmosphere dynamics, meteor physics and ionospheric physics. Radio Sci., 36, 18391857, doi:10.1029/2000RS001005.

    • Search Google Scholar
    • Export Citation
  • Hou, A. Y., and Coauthors, 2014: The Global Precipitation Measurement mission. Bull. Amer. Meteor. Soc., 95, 701722, doi:10.1175/BAMS-D-13-00164.1.

    • Search Google Scholar
    • Export Citation
  • Huang, G.-J., V. N. Bringi, R. Cifelli, D. Hudak, and W. A. Petersen, 2010: A methodology to derive radar reflectivity–liquid equivalent snow rate relations using C-band radar and a 2D video disdrometer. J. Atmos. Oceanic Technol., 27, 637651, doi:10.1175/2009JTECHA1284.1.

    • Search Google Scholar
    • Export Citation
  • Huang, G.-J., V. N. Bringi, D. Moisseev, W. A. Petersen, L. Bliven, and D. Hudak, 2015: Use of 2D-video disdrometer to derive mean density–size and Ze–SR relations: Four snow cases from the Light Precipitation Validation Experiment. Atmos. Res., 153, 3448, doi:10.1016/j.atmosres.2014.07.013.

    • Search Google Scholar
    • Export Citation
  • Hudak, D., H. Barker, P. Rodriguez, and D. Donovan, 2006: The Canadian CloudSat validation project. Proc. Fourth European Conf. on Radar in Meteorology and Hydrology, Barcelona, Spain, Center of Applied Research in Hydrometeorology, P11.6. [Available online at www.crahi.upc.edu/ERAD2006/proceedingsMask/00165.pdf.]

  • Hudak, D., G. Skofronick-Jackson, W. Petersen, D. Hudak, and M. Schwaller, 2011: GCPEX science plan. [Available online at http://pmm.nasa.gov/resources/documents/GPM.]

  • Joe, P., and Coauthors, 2014: The monitoring network of the Vancouver 2010 Olympics. Pure Appl. Geophys., 171, 2558, doi:10.1007/s00024-012-0588-z.

    • Search Google Scholar
    • Export Citation
  • Kneifel, S., M. Maahn, G. Peters, and C. Simmer, 2011: Observation of snowfall with a low-power FM-CW K-band radar (Micro Rain Radar). Meteor. Atmos. Phys., 113, 7587, doi:10.1007/s00703-011-0142-z.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., and R. Bennartz, 2009: Utilizing spaceborne radars to retrieve dry snowfall. J. Appl. Meteor. Climatol., 48, 25642580, doi:10.1175/2009JAMC2193.1.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., R. Bennartz, T. J. Greenwald, Y. Chen, and F. Weng, 2010: Uncertainties in microwave properties of frozen precipitation: Implications for remote sensing and data assimilation. J. Atmos. Sci., 67, 34713487, doi:10.1175/2010JAS3520.1.

    • Search Google Scholar
    • Export Citation
  • Liu, G., 2008: A database of microwave single-scattering properties for nonspherical ice particles. Bull. Amer. Meteor. Soc., 89, 15631570, doi:10.1175/2008BAMS2486.1.

    • Search Google Scholar
    • Export Citation
  • Löhnert, U., S. Kneifel, A. Battaglia, M. Hagen, L. Hirsch, and S. Crewell, 2011: Toward a better understanding of snowfall microphysics: The TOSCA Project. Bull. Amer. Meteor. Soc., 92, 613628, doi:10.1175/2010BAMS2909.1.

    • Search Google Scholar
    • Export Citation
  • Munchak, S. J., and G. Skofronick-Jackson, 2013: Evaluation of precipitation detection over various surfaces from passive microwave imagers and sounders. Atmos. Res., 131, 8194, doi:10.1016/j.atmosres.2012.10.011.

    • Search Google Scholar
    • Export Citation
  • Newman, A., P. Kucera, and L. Bliven, 2009: Presenting the Snowflake Video Imager (SVI). J. Atmos. Oceanic Technol., 26, 167179, doi:10.1175/2008JTECHA1148.1.

    • Search Google Scholar
    • Export Citation
  • Nitu, R., and Coauthors, 2012: WMO intercomparison of instruments and methods for the measure of solid precipitation and snow on the ground: Organization of the experiment. Proc. Technical Conf. on Meteorological and Environmental Instruments and Methods of Observations (TECO-2012), Brussels, Belgium, WMO, 1(1). [Available online at www.wmo.int/pages/prog/www/IMOP/publications/IOM-109_TECO-2012/Session1/O1_01_Nitu_SPICE.pdf.]

  • Noh, Y.-J., G. Liu, A. S. Jones, and T. H. Vonder Haar, 2009: Toward snowfall retrieval over land by combining satellite and in situ measurements. J. Geophys. Res., 114, D24205, doi:10.1029/2009JD012307.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., M. Dixon, S. Vasiloff, F. Hage, S. Knight, J. Vivekanandan, and M. Xu, 2003: Snow nowcasting using a real-time correlation of radar reflectivity with snow gauge accumulation. J. Appl. Meteor., 42, 2036, doi:10.1175/1520-0450(2003)042<0020:SNUART>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., J. Hallett, R. Purcell, S. D. Landolt, and J. Cole, 2011: The hotplate precipitation gauge. J. Atmos. Oceanic Technol., 28, 148164, doi:10.1175/2010JTECHA1375.1.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811829, doi:10.1175/BAMS-D-11-00052.1.

    • Search Google Scholar
    • Export Citation
  • Saavedra, P., A. Battaglia, and C. Simmer, 2011: Partitioning of cloud water and rain water content by ground-based observations with the Advanced Microwave Radiometer for Rain Identification (ADMIRARI) in synergy with a micro rain radar. J. Geophys. Res., 117, D05203, doi:10.1029/2011JD016579.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., H.-S. Park, A. V. Ryzhkov, and H. D. Reeves, 2012: Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals. J. Appl. Meteor. Climatol., 51, 763779, doi:10.1175/JAMC-D-11-091.1.

    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., and P. I. Joe, 2008: Performance of the precipitation occurrence sensor system as a precipitation gauge. J. Atmos. Oceanic Technol., 25, 196212, doi:10.1175/2007JTECHA957.1.

    • Search Google Scholar
    • Export Citation
  • Sheppard, B. E., M.-J. Kim, J. A. Weinman, and D. E. Chang, 2004: A physical model to determine snowfall over land by microwave radiometry. IEEE Trans. Geosci. Remote Sens., 42, 10471058, doi:10.1109/TGRS.2004.825585.

    • Search Google Scholar
    • Export Citation
  • Skofronick-Jackson, G. M., B. T. Johnson, and S. J. Munchak, 2013: Detection thresholds of falling snow from satellite-borne active and passive sensors. IEEE Trans. Geosci. Remote Sens., 51, 41774189, doi:10.1109/TGRS.2012.2227763.

    • Search Google Scholar
    • Export Citation
  • Strawbridge, K. B., M. G. Harwood, M. S. Travis, and B. J. Firanski, 2008: The Canadian Observational Research Aerosol Lidar Network (CORALNET). Proc. 24th Int. Laser Radar Conf., Boulder, CO, International Coordination-Group for Laser Atmospheric Studies and International Association of Meteorology and Atmospheric Physics, S07P-05.

  • Tanelli, S., S. L. Durden, and E. Im, 2006: Simultaneous measurements of Ku- and Ka-band sea surface cross-sections by an airborne radar. IEEE Geosci. Remote Sens. Lett., 3, 359363, doi:10.1109/LGRS.2006.872929.

    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., K. L. Rasmussen, T. Fisico, R. E. Stewart, P. Joe, and G. Isaac, 2014: Weather observations along Whistler Mountain during five storms. Pure Appl. Geophys., 171, 129155, doi:10.1007/s00024-012-0590-5.

    • Search Google Scholar
    • Export Citation
  • Tokay, A., D. B. Wolff, and W. A. Petersen, 2014: Evaluation of the new version of the laser-optical disdrometer, OTT Parsivel2. J. Atmos. Oceanic Technol., 31, 12761288, doi:10.1175/JTECH-D-13-00174.1.

    • Search Google Scholar
    • Export Citation
  • Wang, J. R., G. M. Skofronick-Jackson, M. R. Schwaller, C. M. Johnson, W. B. Monosmith, and Z. Zhang, 2013: Observations of storm signatures by the recently modified conical scanning millimeter-wave imaging radiometer. IEEE Trans. Geosci. Remote Sens., 51, 411424, doi:10.1109/TGRS.2012.2200690.

    • Search Google Scholar
    • Export Citation
  • Wolde, M., and A. Pazmany, 2005: NRC dual-frequency airborne radar for atmospheric research. 32nd Int. Conf. on Radar Meteorology, Albuquerque, NM, Amer. Meteor. Soc., P1R.9. [Available online at https://ams.confex.com/ams/32Rad11Meso/techprogram/paper_96918.htm.]

  • Wolde, M., D. Hudak, A. V. Korolev, and J. W. Strapp, 2010: Airborne radar observation of a major winter storm: Use of dual-frequency and polarimetric measurements in studies cloud structures and processes. 13th Conf. on Cloud Physics, Portland, OR, Amer. Meteor. Soc., J4.6. [Available online at https://ams.confex.com/ams/13CldPhy13AtRad/techprogram/paper_171761.htm.]

  • Wood, N. B., 2011: Estimation of snow microphysical properties with application to millimeter-wavelength radar retrievals for snowfall rate. Ph.D. dissertation, Colorado State University, 248 pp. [Available online at http://hdl.handle.net/10217/48170.]

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 473 291 10
PDF Downloads 323 184 19

Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEX): For Measurement’s Sake, Let It Snow

View More View Less
  • 1 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 2 Environment Canada, King City, Ontario, Canada
  • | 3 NASA Wallops Flight Facility, Wallops Island, Virginia
  • | 4 University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 5 Colorado State University, Fort Collins, Colorado
  • | 6 Jet Propulsion Laboratory, Pasadena, California
  • | 7 University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 8 Colorado State University, Fort Collins, Colorado
  • | 9 Environment Canada, Toronto, Ontario, Canada
  • | 10 McGill University, Montreal, Quebec, Canada
  • | 11 University of Illinois at Urbana–Champaign, Urbana, Illinois
  • | 12 NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 13 University of Manitoba, Winnipeg, Manitoba, Canada
  • | 14 Jet Propulsion Laboratory, Pasadena, California
  • | 15 Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, and NASA Goddard Space Flight Center, Greenbelt, Maryland
  • | 16 Science Systems and Applications, Inc., Lanham, Maryland
  • | 17 National Research Council of Canada, Ottawa, Ontario, Canada
Restricted access

Abstract

As a component of Earth’s hydrologic cycle, and especially at higher latitudes, falling snow creates snowpack accumulation that in turn provides a large proportion of the freshwater resources required by many communities throughout the world. To assess the relationships between remotely sensed snow measurements with in situ measurements, a winter field project, termed the Global Precipitation Measurement (GPM) Cold Season Precipitation Experiment (GCPEx), was carried out in the winter of 2011/12 in Ontario, Canada. Its goal was to provide information on the precipitation microphysics and processes associated with cold season precipitation to support GPM snowfall retrieval algorithms that make use of a dual-frequency precipitation radar and a passive microwave imager on board the GPM core satellite and radiometers on constellation member satellites. Multiparameter methods are required to be able to relate changes in the microphysical character of the snow to measureable parameters from which precipitation detection and estimation can be based. The data collection strategy was coordinated, stacked, high-altitude, and in situ cloud aircraft missions with three research aircraft sampling within a broader surface network of five ground sites that in turn were taking in situ and volumetric observations. During the field campaign 25 events were identified and classified according to their varied precipitation type, synoptic context, and precipitation amount. Herein, the GCPEx field campaign is described and three illustrative cases detailed.

CORRESPONDING AUTHOR: Gail Skofronick-Jackson, NASA Goddard Space Flight Center, Code 612, 8800 Greenbelt Rd., Greenbelt, MD 20771, E-mail: gail.s.jackson@nasa.gov

Abstract

As a component of Earth’s hydrologic cycle, and especially at higher latitudes, falling snow creates snowpack accumulation that in turn provides a large proportion of the freshwater resources required by many communities throughout the world. To assess the relationships between remotely sensed snow measurements with in situ measurements, a winter field project, termed the Global Precipitation Measurement (GPM) Cold Season Precipitation Experiment (GCPEx), was carried out in the winter of 2011/12 in Ontario, Canada. Its goal was to provide information on the precipitation microphysics and processes associated with cold season precipitation to support GPM snowfall retrieval algorithms that make use of a dual-frequency precipitation radar and a passive microwave imager on board the GPM core satellite and radiometers on constellation member satellites. Multiparameter methods are required to be able to relate changes in the microphysical character of the snow to measureable parameters from which precipitation detection and estimation can be based. The data collection strategy was coordinated, stacked, high-altitude, and in situ cloud aircraft missions with three research aircraft sampling within a broader surface network of five ground sites that in turn were taking in situ and volumetric observations. During the field campaign 25 events were identified and classified according to their varied precipitation type, synoptic context, and precipitation amount. Herein, the GCPEx field campaign is described and three illustrative cases detailed.

CORRESPONDING AUTHOR: Gail Skofronick-Jackson, NASA Goddard Space Flight Center, Code 612, 8800 Greenbelt Rd., Greenbelt, MD 20771, E-mail: gail.s.jackson@nasa.gov
Save