• Acevedo, O. C., and D. R. Fitzjarrald, 2001: The early evening surface-layer transition: Temporal and spatial variability. J. Atmos. Sci., 58, 26502667, doi:10.1175/1520-0469(2001)058<2650:TEESLT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Anderson, P. S., 2003: Fine-scale structure observed in a stable atmospheric boundary layer by sodar and kite-borne tethersonde. Bound.-Layer Meteor., 107, 323351, doi:10.1023/A:1022171009297.

    • Search Google Scholar
    • Export Citation
  • Baas, P., F. C. Bosveld, H. Klein Baltink, and A. A. M. Holtslag, 2009: A climatology of nocturnal low-level jet at Cabauw. J. Appl. Meteor. Climatol., 48, 16271642, doi:10.1175/2009JAMC1965.1.

    • Search Google Scholar
    • Export Citation
  • Baklanov, A. A., and Coauthors, 2011: The nature, theory, and modeling of atmospheric planetary boundary layers. Bull. Amer. Meteor. Soc., 92, 123128, doi:10.1175/2010BAMS2797.1.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., 2008: Stable-boundary-layer regimes from the perspective of the low-level jet. Acta Geophys., 56, 5887, doi:10.2478/s11600-007-0049-8.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., R. K. Newsom, J. K. Lundquist, Y. L. Pichugina, R. L. Coulter, and L. Mahrt, 2002: Nocturnal low-level jet characteristics over Kansas during CASES-99. Bound.-Layer Meteor., 105, 221252, doi:10.1023/A:1019992330866.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and R. K. Newsom, 2003: Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J. Atmos. Sci., 60, 25492555, doi:10.1175/1520-0469(2003)060<2549:RBLJPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, and W. A. Brewer, 2006: Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet. J. Atmos. Sci., 63, 27002719, doi:10.1175/JAS3776.1.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., Y. L. Pichugina, N. D. Kelley, R. M. Hardesty, and W. A. Brewer, 2013: Wind energy meteorology: Insight into wind properties in the turbine-rotor layer of the atmosphere from high-resolution Doppler lidar. Bull. Amer. Meteor. Soc., 94, 883902, doi:10.1175/BAMS-D-11-00057.1.

    • Search Google Scholar
    • Export Citation
  • Barthelmie, R. J., and Coauthors, 2014: 3D wind and turbulence characteristics of the atmospheric boundary layer. Bull. Amer. Meteor. Soc., 95, 743756, doi:10.1175/BAMS-D-12-00111.1.

    • Search Google Scholar
    • Export Citation
  • Beyrich, F., D. Kalass, and U. Weisensee, 1997: Influence of the nocturnal low-level jet on the vertical and mesoscale structure of the stable boundary layer as revealed from Doppler-sodar-observations. Acoustic Remote Sensing Applications, S. P. Singal, Ed., Narosa Publishing, 236–246.

  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290.

    • Search Google Scholar
    • Export Citation
  • Bonin, T. A., 2015: Nocturnal boundary layer and low-level jet characteristics under different turbulence regimes. Ph.D. dissertation, University of Oklahoma, 169 pp.

  • Bonin, T. A., W. G. Blumberg, P. M. Klein, and P. B. Chilson, 2015. Thermodynamic and turbulence characteristics of the southern Great Plains nocturnal boundary layer under differing turbulent regimes. Bound.-Layer Meteor., in press.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., 1968: Climatology of the low level jet. Mon. Wea. Rev., 96, 833850, doi:10.1175/1520-0493(1968)096<0833:COTLLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brook, R. R., 1985: The Koorin nocturnal low-level jet. Bound.-Layer Meteor., 32, 133154, doi:10.1007/BF00120932.

  • Calhoun, R., R. Heap, M. Princevac, R. Newsom, H. Fernando, and D. Ligon, 2006: Virtual towers using coherent Doppler lidar during the Joint Urban 2003 dispersion experiment. J. Appl. Meteor. Climatol., 45, 11161126, doi:10.1175/JAM2391.1.

    • Search Google Scholar
    • Export Citation
  • Cariou, J.-P., 2011: Pulsed lidars. Remote Sensing for Wind Energy, A. Peña and C. B. Hasager, Eds., Risø Rep. Risø-I-3184(EN), 65–81.

  • Comstock, J. M., and Coauthors, 2007: An intercomparison of microphysical retrieval for upper-tropospheric ice clouds. Bull. Amer. Meteor. Soc., 88, 191204, doi:10.1175/BAMS-88-2-191.

    • Search Google Scholar
    • Export Citation
  • Cook, D. R., 2011: Eddy correlation flux measurement system handbook. Department of Energy Rep. DOE/SC-ARM/TR-052, 16 pp. [Available online at www.arm.gov/publications/tech_reports/handbooks/ecor_handbook.pdf?id=73.]

  • Coulter, R. L., and M. A. Kallistratova, 2004: Two decades of progress in SODAR techniques: A review of 11 ISARS proceedings. Meteor. Atmos. Phys., 85, 319, doi:10.1007/s00703-003-0030-2.

    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., W. L. Smith, R. O. Knuteson, H. E. Revercomb, H. M. Woolf, and H. B. Howell, 1998: Meteorological applications of temperature and water vapor retrievals from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor., 37, 857875, doi:10.1175/1520-0450(1998)037<0857:MAOTAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Feltz, W. F., W. L. Smith, H. B. Howell, R. O. Knuteson, H. Woolf, and H. E. Revercomb, 2003: Near-continuous profiling of temperature, moisture, and atmospheric stability using the Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor., 42, 584597, doi:10.1175/1520-0450(2003)042<0584:NPOTMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., and J. C. Weil, 2010: Whither the stable boundary layer? A shift in the research agenda. Bull. Amer. Meteor. Soc., 91, 14751484, doi:10.1175/2010BAMS2770.1.

    • Search Google Scholar
    • Export Citation
  • Ferrare, R. A., and Coauthors, 2006: Evaluation of daytime measurements of aerosols and water vapor made by an operational Raman lidar over the southern Great Plains. J. Geophys. Res., 111, D05S08, doi:10.1029/2005JD005836.

    • Search Google Scholar
    • Export Citation
  • Fischer, M. L., 2004: Carbon Dioxide Flux Measurement Systems (CO2FLX) handbook. Department of Energy Rep. DOE/SC-ARM/TR-048, 12 pp. [Available online at www.arm.gov/publications/tech_reports/handbooks/co2flx_handbook.pdf?id=44.]

  • Foken, T., 2008: Micrometeorology. Springer, 299 pp.

  • Friedrich, K., J. K. Lundquist, M. Aitken, E. A. Kalina, and R. F. Marshall, 2012: Stability and turbulence in the atmospheric boundary layer: A comparison of remote sensing and tower observations. Geophys. Res. Lett., 39, L03801, doi:10.1029/2011GL050413.

    • Search Google Scholar
    • Export Citation
  • Gero, P. J., and D. D. Turner, 2011: Long-term trends in downwelling spectral infrared radiance over the U.S. southern Great Plains. J. Climate, 24, 48314843, doi:10.1175/2011JCLI4210.1.

    • Search Google Scholar
    • Export Citation
  • Goldsmith, J. E. M., F. H. Blair, S. E. Bisson, and D. D. Turner, 1998: Turn-key Raman lidar for profiling water vapor, clouds, and aerosols. Appl. Opt., 37, 49794990, doi:10.1364/AO.37.004979.

    • Search Google Scholar
    • Export Citation
  • Hall, F. F., Jr., J. G. Edinger, and W. D. Neff, 1975: Convective plumes in the planetary boundary layer, investigated with an acoustic echo sounder. J. Appl. Meteor., 14, 513523, doi:10.1175/1520-0450(1975)014<0513:CPITPB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hoecker, W. H., 1963: Three southerly low-level jet systems delineated by the Weather Bureau special pibal network of 1961. Mon. Wea. Rev., 91, 573582, doi:10.1175/1520-0493(1963)091<0573:TSLJSD>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Højstrup, J., 1993: A statistical data screening procedure. Meas. Sci. Technol., 4, 153157, doi:10.1088/0957-0233/4/2/003.

  • Holtslag, A. A. M., and Coauthors, 2013: Stable atmospheric boundary layers and diurnal cycles: Challenges for weather and climate models. Bull. Amer. Meteor. Soc., 94, 16911706, doi:10.1175/BAMS-D-11-00187.1.

    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., P. Klein, and M. Xue, 2013a: Evaluation of the updated YSU planetary boundary layer scheme within WRF for wind resource and air quality assessments. J. Geophys. Res. Atmos., 118, 10 49010 505, doi:10.1002/jgrd.50823.

    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., P. Klein, M. Xue, J. K. Lundquist, F. Zhang, and Y. Qi, 2013b: Impact of low-level jets on the nocturnal urban heat island intensity in Oklahoma City. J. Appl. Meteor. Climatol., 52, 17791802, doi:10.1175/JAMC-D-12-0256.1.

    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., P. Klein, M. Xue, F. Zhang, D. Doughty, and J. Fuentes, 2013c: Impact of the vertical mixing induced by low-level jets on boundary layer ozone concentration. Atmos. Environ., 70, 123130, doi:10.1016/j.atmosenv.2012.12.046.

    • Search Google Scholar
    • Export Citation
  • Huffaker, R. M., and R. M. Hardesty, 1996: Remote sensing of atmospheric wind velocities using solid-state and CO2 coherent laser systems. Proc. IEEE, 84, 181204, doi:10.1109/5.482228.

    • Search Google Scholar
    • Export Citation
  • Iungo, G. V., Y.-T. Wu, and F. Porté-Agel, 2013: Field measurements of wind turbine wakes with lidars. J. Atmos. Oceanic Technol., 30, 274287, doi:10.1175/JTECH-D-12-00051.1.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J. C., and J. J. Finnigan, 1994: Atmospheric Boundary Layer Flows: Their Structure and Measurement. Oxford University Press, 304 pp.

  • Klein, P. M., X.-M. Hu, and M. Xue, 2014: Impacts of mixing processes in the nocturnal atmospheric boundary layer on urban ozone concentrations. Bound.-Layer Meteor., 150, 107130, doi:10.1007/s10546-013-9864-4.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004a: The Atmospheric Emitted Radiance Interferometer (AERI). Part I: Instrument design. J. Atmos. Oceanic Technol., 21, 17631776, doi:10.1175/JTECH-1662.1.

    • Search Google Scholar
    • Export Citation
  • Knuteson, R. O., and Coauthors, 2004b: The Atmospheric Emitted Radiance Interferometer (AERI). Part II: Instrument performance. J. Atmos. Oceanic Technol., 21, 17771789, doi:10.1175/JTECH-1663.1.

    • Search Google Scholar
    • Export Citation
  • Lenschow, D. H., V. Wulfmeyer, and C. Senff, 2000: Measuring second- through fourth-order moments in noisy data. J. Atmos. Oceanic Technol., 17, 13301347, doi:10.1175/1520-0426(2000)017<1330:MSTFOM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lothon, M., D. H. Lenschow, and S. D. Mayor, 2006: Coherence and scale of vertical velocity in the convective boundary layer from a Doppler lidar. Bound.-Layer Meteor., 121, 521536, doi:10.1007/s10546-006-9077-1.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., T. P. Ackerman, P. Minnis, and D. F. Young, 1998: Cirrus layer microphysical properties derived from surface-based millimeter radar and infrared interferometer data. J. Geophys. Res., 103, 23 20723 216, doi:10.1029/98JD02117.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., 1999: Stratified atmospheric boundary layers. Bound.-Layer Meteor., 90, 375396, doi:10.1023/A:1001765727956.

  • Mahrt, L., 2014: Stably stratified atmospheric boundary layers. Annu. Rev. Fluid Mech., 46, 2345, doi:10.1146/annurev-fluid-010313-141354.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., and J. W. Voyles, 2013: The ARM Climate Research Facility: A review of structure and capabilities. Bull. Amer. Meteor. Soc., 94, 377392, doi:10.1175/BAMS-D-11-00218.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, M. K., R. W. Arritt, and K. Labas, 1995: An hourly climatology of the summertime Great Plains low-level jet using wind profiler observations. Wea. Forecasting, 10, 576591, doi:10.1175/1520-0434(1995)010<0576:ACOTWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado, and D. C. Tobin, 2012: Development and recent evaluation of the MT_CKD model of continuum absorption. Philos. Trans. Roy. Meteor. Soc., 370A, 25202556, doi:10.1098/rsta.2011.0295.

    • Search Google Scholar
    • Export Citation
  • Newman, J. F., 2015: Optimizing lidar scanning strategies for wind energy turbulence measurements. Ph.D. dissertation, University of Oklahoma, 212 pp.

  • Newsom, R. K., R. Calhoun, D. Ligon, and J. Allwine, 2008: Linearly organized turbulence structures observed over a suburban area by dual-Doppler lidar. Bound.-Layer Meteor., 127, 111130, doi:10.1007/s10546-007-9243-0.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., D. D. Turner, B. Mielke, M. Clayton, R. A. Ferrare, and C. Sivaraman, 2009: The use of simultaneous analog and photon counting detection for Raman lidar. Appl. Opt., 48, 39033914, doi:10.1364/AO.48.003903.

    • Search Google Scholar
    • Export Citation
  • Newsom, R. K., D. D. Turner, and J. E. M. Goldsmith, 2013: Long-term evaluation of temperature profiles measured by an operational Raman lidar. J. Atmos. Oceanic Technol., 30, 16161634, doi:10.1175/JTECH-D-12-00138.1.

    • Search Google Scholar
    • Export Citation
  • NRC, 2009: Observing Weather and Climate from the Ground Up: A Nationwide Network of Networks. Committee on Developing Mesoscale Meteorological Observational Capabilities to Meet Multiple National Needs, 250 pp.

  • NRC, 2010: When Weather Matters: Science and Services to Meet Critical Societal Needs. Committee on Progress and Priorities of U.S. Weather Research and Research-to-Operations Activities, 198 pp.

  • Parish, T. R., A. R. Rodi, and R. D. Clark, 1988: A case study of the summertime Great Plains low level jet. Mon. Wea. Rev., 116, 94105, doi:10.1175/1520-0493(1988)116<0094:ACSOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pearson, G., F. Davies, and C. Collier, 2009: An analysis of the performance of the UFAM pulsed Doppler lidar for observing the boundary layer. J. Atmos. Oceanic Technol., 26, 240250, doi:10.1175/2008JTECHA1128.1.

    • Search Google Scholar
    • Export Citation
  • Sathe, A., 2012: Influence of wind conditions on wind turbine loads and measurement of turbulence using lidars. Ph.D. thesis, Delft University, 158 pp.

  • Sathe, A., and J. Mann, 2012: Turbulence measurements using six lidar beams. Extended Abstracts, 16th Int. Symp. for the Advancement of Boundary-Layer Remote Sensing, Boulder, CO, NOAA–CIRES, 302–305.

  • Sathe, A., J. Mann, J. Gottschall, and M. S. Courtney, 2011: Can wind lidars measure turbulence? J. Atmos. Oceanic Technol., 28, 853868, doi:10.1175/JTECH-D-10-05004.1.

    • Search Google Scholar
    • Export Citation
  • Song, J., K. Liao, R. L. Coulter, and B. M. Lesht, 2005: Climatology of the low-level jet at the Southern Great Plains Atmospheric Boundary Layer Experiments site. J. Appl. Meteor., 44, 15931606, doi:10.1175/JAM2294.1.

    • Search Google Scholar
    • Export Citation
  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 16981711, doi:10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Strauch, R. G., D. A. Merritt, K. P. Moran, K. B. Earnshaw, and D. V. De Kamp, 1984: The Colorado Wind-Profiling Network. J. Atmos. Oceanic Technol., 1, 3749, doi:10.1175/1520-0426(1984)001<0037:TCWPN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer, 684 pp.

  • Tobin, D. C., and Coauthors, 1999: Downwelling spectral radiance observation at the SHEBA ice station: Water vapor continuum measurements from 17 to 26 µm. J. Geophys. Res., 104, 20812092, doi:10.1029/1998JD200057.

    • Search Google Scholar
    • Export Citation
  • Träumner, K., C. Kottmeier, U. Corsmeier, and A. Wiser, 2011: Convective boundary-layer entrainment: Short review and progress using Doppler lidar. Bound.-Layer Meteor., 141, 369391, doi:10.1007/s10546-011-9657-6.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2007: Improved ground-based liquid water path retrievals using a combined infrared and microwave approach. J. Geophys. Res., 112, D15204, doi:10.1029/2007JD008530.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2008: Ground-based retrievals of optical depth, effective radius, and composition of airborne mineral dust above the Sahel. J. Geophys. Res., 113, D00E03, doi:10.1029/2008JD010054.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and J. E. M. Goldsmith, 1999: Twenty-four-hour Raman lidar water vapor measurements during the Atmospheric Radiation Measurement program’s 1996 and 1997 water vapor intensive observation periods. J. Atmos. Oceanic Technol., 16, 10621076, doi:10.1175/1520-0426(1999)016<1062:TFHRLW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and U. Löhnert, 2014: Information content and uncertainties in thermodynamic profiles and liquid cloud properties retrieved from the ground-based Atmospheric Emitted Radiance Interferometer (AERI). J. Appl. Meteor. Climatol., 53, 752771, doi:10.1175/JAMC-D-13-0126.1.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., R. A. Ferrare, L. A. Heilman Brasseur, W. F. Feltz, and T. P. Tooman, 2002: Automated retrievals of water vapor and aerosol profiles from an operational Raman lidar. J. Atmos. Oceanic Technol., 19, 3750, doi:10.1175/1520-0426(2002)019<0037:AROWVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2004: The QME AERI LBLRTM: A closure experiment for downwelling high spectral resolution infrared radiance. J. Atmos. Sci., 61, 26572675, doi:10.1175/JAS3300.1.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., V. Wulfmeyer, L. K. Berg, and J. H. Schween, 2014: Water vapor turbulence profiles in stationary continental convective mixed layers. J. Geophys. Res. Atmos., 119, 11 15111 165, doi:10.1002/2014JD022202.

    • Search Google Scholar
    • Export Citation
  • Vickers, D., and L. Mahrt, 1997: Quality control and flux sampling problems for tower and aircraft data. J. Atmos. Oceanic Technol., 14, 512526, doi:10.1175/1520-0426(1997)014<0512:QCAFSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Walters, C. K., J. A. Winkler, R. P. Shadbolt, J. van Ravensway, and G. D. Bierly, 2008: A long-term climatology of southerly and northerly low-level jets for the central United States. Ann. Assoc. Amer. Geogr., 98, 521552, doi:10.1080/00045600802046387.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., C. L. Klipp, D. M. Garvey, D. A. Ligon, C. C. Williamson, S. S. Chang, R. K. Newsom, and R. Calhoun, 2007: Nocturnal low-level-jet-dominated atmospheric boundary layer observed by a Doppler lidar over Oklahoma City during 2003. J. Appl. Meteor. Climatol., 46, 20982109, doi:10.1175/2006JAMC1283.1.

    • Search Google Scholar
    • Export Citation
  • Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quart. J. Roy. Meteor. Soc., 106, 85100, doi:10.1002/qj.49710644707.

    • Search Google Scholar
    • Export Citation
  • Whiteman, C. D., X. Bian, and S. Zhong, 1997: Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J. Appl. Meteor., 36, 13631376, doi:10.1175/1520-0450(1997)036<1363:LLJCFE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wulfmeyer, V., S. Pal, D. D. Turner, and E. Wagner, 2010: Can water vapour Raman lidar resolve profiles of turbulent variables in the convective boundary layer? Bound.-Layer Meteor., 136, 253284, doi:10.1007/s10546-010-9494-z.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2010: Turbulence in the Atmosphere. Cambridge University Press, 393 pp.

  • Yurganov, L., W. McMillan, C. Wilson, M. Fischer, and C. Sweeney, 2010: Carbon monoxide mixing ratios over Oklahoma between 2002 and 2009 retrieved from Atmospheric Emitted Radiance Interferometer spectra. Atmos. Meas. Technol., 3, 13191331, doi:10.5194/amt-3-1319-2010.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., J. D. Fast, and X. Bian, 1996: A case study of the Great Plains low-level jet using wind profiler network data and a high-resolution mesoscale model. Mon. Wea. Rev., 124, 785806, doi:10.1175/1520-0493(1996)124<0785:ACSOTG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 556 293 35
PDF Downloads 208 109 12

LABLE: A Multi-Institutional, Student-Led, Atmospheric Boundary Layer Experiment

View More View Less
  • 1 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 2 NOAA/National Severe Storms Laboratory, Norman, Oklahoma
  • | 3 School of Meteorology, and Advanced Radar Research Center, University of Oklahoma, Norman, Oklahoma
  • | 4 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 5 School of Meteorology, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • | 6 Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma
  • | 7 School of Meteorology, University of Oklahoma, Norman, Oklahoma
  • | 8 Lawrence Livermore National Laboratory, Livermore, California
  • | 9 Pacific Northwest National Laboratory, Richland, Washington
Restricted access

Abstract

This paper presents an overview of the Lower Atmospheric Boundary Layer Experiment (LABLE), which included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was conducted as a collaborative effort between the University of Oklahoma (OU), the National Severe Storms Laboratory, Lawrence Livermore National Laboratory (LLNL), and the ARM program. LABLE can be considered unique in that it was designed as a multiphase, low-cost, multiagency collaboration. Graduate students served as principal investigators and took the lead in designing and conducting experiments aimed at examining boundary layer processes.

The main objective of LABLE was to study turbulent phenomena in the lowest 2 km of the atmosphere over heterogeneous terrain using a variety of novel atmospheric profiling techniques. Several instruments from OU and LLNL were deployed to augment the suite of in situ and remote sensing instruments at the ARM site. The complementary nature of the deployed instruments with respect to resolution and height coverage provides a near-complete picture of the dynamic and thermodynamic structure of the atmospheric boundary layer. This paper provides an overview of the experiment including 1) instruments deployed, 2) sampling strategies, 3) parameters observed, and 4) student involvement. To illustrate these components, the presented results focus on one particular aspect of LABLE: namely, the study of the nocturnal boundary layer and the formation and structure of nocturnal low-level jets. During LABLE, low-level jets were frequently observed and they often interacted with mesoscale atmospheric disturbances such as frontal passages.

CORRESPONDING AUTHOR: Dr. Petra Klein, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Norman, OK 73072, E-mail: pkklein@ou.edu

Abstract

This paper presents an overview of the Lower Atmospheric Boundary Layer Experiment (LABLE), which included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was conducted as a collaborative effort between the University of Oklahoma (OU), the National Severe Storms Laboratory, Lawrence Livermore National Laboratory (LLNL), and the ARM program. LABLE can be considered unique in that it was designed as a multiphase, low-cost, multiagency collaboration. Graduate students served as principal investigators and took the lead in designing and conducting experiments aimed at examining boundary layer processes.

The main objective of LABLE was to study turbulent phenomena in the lowest 2 km of the atmosphere over heterogeneous terrain using a variety of novel atmospheric profiling techniques. Several instruments from OU and LLNL were deployed to augment the suite of in situ and remote sensing instruments at the ARM site. The complementary nature of the deployed instruments with respect to resolution and height coverage provides a near-complete picture of the dynamic and thermodynamic structure of the atmospheric boundary layer. This paper provides an overview of the experiment including 1) instruments deployed, 2) sampling strategies, 3) parameters observed, and 4) student involvement. To illustrate these components, the presented results focus on one particular aspect of LABLE: namely, the study of the nocturnal boundary layer and the formation and structure of nocturnal low-level jets. During LABLE, low-level jets were frequently observed and they often interacted with mesoscale atmospheric disturbances such as frontal passages.

CORRESPONDING AUTHOR: Dr. Petra Klein, School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Norman, OK 73072, E-mail: pkklein@ou.edu
Save