• Cherkassky, D., J. Ostrometzky, and H. Messer, 2014: Precipitation classification using measurements from commercial microwave links. IEEE Trans. Geosci. Remote Sens., 52, 23502356, doi:10.1109/TGRS.2013.2259832.

    • Search Google Scholar
    • Export Citation
  • Chwala, C., and Coauthors, 2012: Precipitation observation using microwave backhaul links in the alpine and pre-alpine region of southern Germany. Hydrol. Earth Syst. Sci., 16, 26472661, doi:10.5194/hess-16-2647-2012.

    • Search Google Scholar
    • Export Citation
  • Chwala, C., P. Kunstmann, S. Hipp, and U. Siart, 2014: A monostatic microwave transmission experiment for line integrated precipitation and humidity remote sensing. Atmos. Res., 144, 5772, doi:10.1016/j.atmosres.2013.05.014.

    • Search Google Scholar
    • Export Citation
  • Csurgai-Horváth, L., and J. Bitó, 2010: Fog attenuation on V band terrestrial radio and a low-cost measurement setup. Future Network and Mobile Summit 2010 Conference Proceedings, P. Cunningham and M. Cunningham, Eds., IIMC International Information Management Corporation, 47.

  • David, N., P. Alpert, and H. Messer, 2009: Novel method for water vapour monitoring using wireless communication networks measurements. Atmos. Chem. Phys., 9, 24132418, doi:10.5194/acp-9-2413-2009.

    • Search Google Scholar
    • Export Citation
  • David, N., P. Alpert, and H. Messer, 2011: Humidity measurements using commercial microwave links. Advanced Trends in Wireless Communications, M. Khatib, Ed., In-Tech Open Access Publisher, 65–78.

  • David, N., P. Alpert, and H. Messer, 2013a: The potential of cellular network infrastructures for sudden rainfall monitoring in dry climate regions. Atmos. Res., 131, 1321, doi:10.1016/j.atmosres.2013.01.004.

    • Search Google Scholar
    • Export Citation
  • David, N., P. Alpert, and H. Messer, 2013b: The potential of commercial microwave networks to monitor dense fog- feasibility study. J. Geophys. Res. Atmos., 118, 11 75011 761, doi:10.1002/2013JD020346.

    • Search Google Scholar
    • Export Citation
  • Doumounia, A., M. Gosset, F. Cazenave, M. Kacou, and F. Zougmore, 2014: Rainfall monitoring based on microwave links from cellular telecommunication networks: First results from a West African test bed. Geophys. Res. Lett., 41, 60166022, doi:10.1002/2014GL060724.

    • Search Google Scholar
    • Export Citation
  • Fuzzi, S., and Coauthors, 1992: The Po Valley Fog Experiment 1989: An overview. TeIlus, 44B, 448468, doi:10.1034/j.1600-0889.1992.t01-4-00002.x.

    • Search Google Scholar
    • Export Citation
  • Glickman, T., Ed., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp.

  • Goldshtein, O., H. Messer, and A. Zinevich, 2009: Rain rate estimation using measurements from commercial telecommunications links. IEEE Trans. Signal Process., 57, 16161625, doi:10.1109/TSP.2009.2012554.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and G. A. Isaac, 2004: Aircraft observations of cloud droplet number concentration: Implications for climate studies. Quart. J. Roy. Meteor. Soc., 130, 23772390, doi:10.1256/qj.03.120.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., M. D. Müller, and Z. Boybeyi, 2006: A new visibility parameterization for warm-fog applications in numerical weather prediction models. J. Appl. Meteor. Climatol., 45, 14691480, doi:10.1175/JAM2423.1.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., M. Pawgoski, and J. Reid, 2007a: A satellite-based fog detection scheme using screen air temperature Wea. Forecasting, 22, 444456, doi:10.1175/WAF1011.1.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and Coauthors, 2007b: Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys., 164, 11211159, doi:10.1007/s00024-007-0211-x.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and Coauthors, 2009: The fog remote sensing and modeling field project. Bull. Amer. Meteor. Soc., 90, 341359, doi:10.1175/2008BAMS2354.1.

    • Search Google Scholar
    • Export Citation
  • Gultepe, I., and Coauthors, 2014: Ice fog in Arctic during FRAM–Ice Fog Project: Aviation and nowcasting applications. Bull. Amer. Meteor. Soc., 95, 211226, doi:10.1175/BAMS-D-11-00071.1.

    • Search Google Scholar
    • Export Citation
  • Harel, O., N. David, P. Alpert, and H. Messer, 2015: The potential of microwave communication networks to detect dew using the GLRT—Experimental study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., doi:10.1109/JSTARS.2015.2465909, in press.

    • Search Google Scholar
    • Export Citation
  • Harsryd, J., and J. Edstam, 2011: Microwave capacity evaluation. Ericsson Review, Stockholm, Sweden. [Available online at www.ericsson.com/res/docs/review/Microwave-Capacity-Evolution.pdf.]

  • Henning, R. E., and J. R. Stanton, 1996: Effects of dew on millimeter-wave propagation. Proceedings of the IEEE Southeastcon '96: Bringing Together Education, Science and Technology, IEEE, 684–687, doi:10.1109/SECON.1996.510158.

  • Herckes, P., H. Chang, T. Lee, and J. L. Collet Jr., 2007: Air pollution processing by radiation fogs. Water Air Soil Pollut., 181, 6575, doi:10.1007/s11270-006-9276-x.

    • Search Google Scholar
    • Export Citation
  • International Telecommunication Union, 2005: Attenuation by atmospheric gases. Rec. ITU-R P.676–6. 23pp. [Available online at www.itu.int/rec/R-REC-P.676-6-200503-S/en.]

  • International Telecommunication Union, 2013: Attenuation due to clouds and fog. Rec. ITU-R P.840–6, 4 pp. [Available online at www.itu.int/rec/R-REC-P.840-6-201309-I/en.]

  • Klein, C., and A. Dabas, 2014: Relationship between optical extinction and liquid water content in fogs. Atmos. Meas. Tech., 7, 12771287, doi:10.5194/amt-7-1277-2014.

    • Search Google Scholar
    • Export Citation
  • Klemm, O., T. Wrzesinsky, and C. Scheer, 2005: Fog water flux at a canopy top: Direct measurement versus one-dimensional model. Atmos. Environ., 39, 53755386, doi:10.1016/j.atmosenv.2005.05.041.

    • Search Google Scholar
    • Export Citation
  • Kunkel, B., 1984: Parameterization of droplet terminal velocity and extinction coefficient in fog models. J. Appl. Meteor. Climatol., 23, 3441, doi:10.1175/1520-0450(1984)023<0034:PODTVA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Leijnse, H., R. Uijlenhoet, and J. Stricker, 2007: Rainfall measurement using radio links from cellular communication networks. Water Resour. Res., 43, W03201, doi:10.1029/2006WR005631.

    • Search Google Scholar
    • Export Citation
  • Lensky, I. M., and D. Rosenfeld, 2008: Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT). Atmos. Chem. Phys., 8, 67396753, doi:10.5194/acp-8-6739-2008.

    • Search Google Scholar
    • Export Citation
  • Liberman, Y., R. Samuels, P. Alpert, and H. Messer, 2014: New algorithm for integration between wireless microwave sensor network and radar for improved rainfall measurement and mapping. Atmos. Meas. Tech., 7, 35493563, doi:10.5194/amt-7-3549-2014.

    • Search Google Scholar
    • Export Citation
  • Messer, H., A. Zinevich, and P. Alpert, 2006: Environmental monitoring by wireless communication networks. Science, 312, 713, doi:10.1126/science.1120034.

    • Search Google Scholar
    • Export Citation
  • Meyer, M. B., J. E. Jiusto, and G. G. Lala, 1980: Measurements of visual range and radiation-fog (haze) microphysics. J. Atmos. Sci., 37, 622629, doi:10.1175/1520-0469(1980)037<0622:MOVRAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neter, J., M. H. Kutner, C. Nachtsheim, and W. Wasserman, 1996: Applied Linear Statistical Models. 4th ed. McGraw Hill, 720 pp.

  • Overeem, A., H. Leijnse, and R. Uijlenhoet, 2013: Country-wide rainfall maps from cellular communication networks. Proc. Natl. Acad. Sci. USA, 110, 27412745, doi:10.1073/pnas.1217961110.

    • Search Google Scholar
    • Export Citation
  • Pagowski, M., I. Gultepe, and P. King, 2004: Analysis and modeling of an extremely dense fog event in southern Ontario. J. Appl. Meteor., 43, 316, doi:10.1175/1520-0450(2004)043<0003:AAMOAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pinnick, R. G., D. L. Hoihjelle, G. Fernandez, E. B. Stenmark, J. D. Lindberg, and G. B. Hoidale, 1978: Vertical structure in atmospheric fog and haze and its effects on visible and infrared extinction. J. Atmos. Sci., 35, 20202032, doi:10.1175/1520-0469(1978)035<2020:VSIAFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rayitsfeld, A., R. Samuels, A. Zinevich, U. Hadar, and P. Alpert, 2012: Comparison of two methodologies for long term rainfall monitoring using a commercial microwave communication system. Atmos. Res., 104–105, 119127, doi:10.1016/j.atmosres.2011.08.011.

    • Search Google Scholar
    • Export Citation
  • Sendik, O., and H. Messer, 2015: A new approach to precipitation monitoring: A critical survey of existing technologies and challenges. IEEE Signal Process. Mag., 32, 110122, doi:10.1109/MSP.2014.2309705.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., M. Schleiss, J. Jaffrain, A. Berne, and J. Rieckermann, 2012: Using Markov switching models to infer dry and rainy periods from telecommunication microwave link signals. Atmos. Meas. Tech., 5, 18471859, doi:10.5194/amt-5-1847-2012.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 2008: Guide to Meteorological Instruments and Methods of Observation. 7th ed. WMO-8. [Available online at www.wmo.int/pages/prog/gcos/documents/gruanmanuals/CIMO/CIMO_Guide-7th_Edition-2008.pdf.]

  • Zinevich, A., P. Alpert, and H. Messer, 2008: Estimation of rainfall fields using commercial microwave communication networks of variable density. Adv. Water Resour., 31, 14701480, doi:10.1016/j|.advwatres.2008.03.003.

    • Search Google Scholar
    • Export Citation
  • Zinevich, A., H. Messer, and P. Alpert, 2009: Frontal rainfall observation by a commercial microwave communication network. J. Appl. Meteor. Climatol., 48, 13171334, doi:10.1175/2008JAMC2014.1.

    • Search Google Scholar
    • Export Citation
  • Zinevich, A., H. Messer, and P. Alpert, 2010: Prediction of rainfall intensity measurement errors using commercial microwave communication links. Atmos. Meas. Tech., 3, 13851402, doi:10.5194/amt-3-1385-2010.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 364 233 11
PDF Downloads 233 142 7

Cellular Network Infrastructure: The Future of Fog Monitoring?

View More View Less
  • 1 Department of Geosciences, Tel Aviv University, Tel Aviv, Israel
  • | 2 School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
  • | 3 Department of Geosciences, Tel Aviv University, Tel Aviv, Israel
Restricted access

Abstract

Severe visibility limitations resulting from fog may lead to acute transportation accidents and high losses of property and lives. Thus, reliable monitoring facilities are of extreme importance. Nevertheless, current monitoring instruments suffer from low spatial resolution, high costs, or lack of precision at near-surface levels. It has, however, recently been shown that the commercial microwave links that form the infrastructure of cellular communication networks can provide crucial information regarding the appearance of dense fog and its intensity. Typical microwave systems currently in operation make use of frequencies between 6 and 40 GHz and, thus, can only monitor heavy fog. However, there is a growing demand for high data rates and expanded bandwidth in modern mobile radio networks. As a result, higher frequencies (e.g., around 80 GHz) are being implemented in order to fulfill these increased requirements. Notably, the attenuation induced as a result of fog at a given intensity increases as operating frequency rises, allowing, for the first time, the possibility of using this system to monitor typical fog intensities, at high resolution and low cost. Here, a theoretical simulation is presented in which simulated fog patches are introduced into an area where a network of links is deployed. Two-dimensional maps are generated utilizing the simulated microwave network to represent sensitivity thresholds for fog detection at three different frequencies: 20, 38, and 80 GHz. Real-data measurements of fog are also demonstrated using 38-GHz band links. The results indicate the vast future potential of commercial microwave links as an opportunistic system for monitoring fog.

CORRESPONDING AUTHOR: Dr. Noam David, Dept. of Geosciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel, E-mail: noamda@post.tau.ac.il

Abstract

Severe visibility limitations resulting from fog may lead to acute transportation accidents and high losses of property and lives. Thus, reliable monitoring facilities are of extreme importance. Nevertheless, current monitoring instruments suffer from low spatial resolution, high costs, or lack of precision at near-surface levels. It has, however, recently been shown that the commercial microwave links that form the infrastructure of cellular communication networks can provide crucial information regarding the appearance of dense fog and its intensity. Typical microwave systems currently in operation make use of frequencies between 6 and 40 GHz and, thus, can only monitor heavy fog. However, there is a growing demand for high data rates and expanded bandwidth in modern mobile radio networks. As a result, higher frequencies (e.g., around 80 GHz) are being implemented in order to fulfill these increased requirements. Notably, the attenuation induced as a result of fog at a given intensity increases as operating frequency rises, allowing, for the first time, the possibility of using this system to monitor typical fog intensities, at high resolution and low cost. Here, a theoretical simulation is presented in which simulated fog patches are introduced into an area where a network of links is deployed. Two-dimensional maps are generated utilizing the simulated microwave network to represent sensitivity thresholds for fog detection at three different frequencies: 20, 38, and 80 GHz. Real-data measurements of fog are also demonstrated using 38-GHz band links. The results indicate the vast future potential of commercial microwave links as an opportunistic system for monitoring fog.

CORRESPONDING AUTHOR: Dr. Noam David, Dept. of Geosciences, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel, E-mail: noamda@post.tau.ac.il
Save